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i '75\? ABSTRACT A

Piecewise-linear switching functions are investigated for minimum-
time regulator systems represented by a linear, constant parameter plant
and a single controller. It is assumed that the plant transfer function
has only poles and that the controller is an ideal contactor. Consider-
ation is limited to switching functions which are the sum of linear or
piecewise-linear functions of single variables,

A performance criterion is defined in terms of the response times
for a number of initial conditions. Optimal linear and piecewise-=linear
switching functions are found by searching the surface relating the
performance criterion and the undetermined switching function parameters.
It is shown that the initial conditions used to define the criterion
function have a substantial effect upon the smoothness of the perform-
ance surface. Methods are given for selecting the initial conditions
used to define the criterion function so that the performance surface
is amenable to standard surface searching procedures.

A qualitative method based upon root-locus techniques and the exist-
ence of certain periodic solutions is given for designing sub-optimal
linear switching functions, in order to initiate the search of the
performance surface in a region where the surface exists and for deter-
mining which components of the switching function should be made piece-
wise-linear functions.

The design methods are illustrated by synthesizing piecewise-linear
switching functions which yield close=to-optimal step-function responses
for third- and fourth-order plants having all of their poles on the
imaginary axis of the s-plane. These plants were chosen because they
are inherently more difficult to control than plants having well-damped
poles. The qualitative design procedures are applied also to a third-
order plant having well-damped poles.

It is concluded that easily-implemented, piecewise-linear switching
functions can provide close-to-optimal response for a wide variety of
plants and initial conditions. The design procedures are applicable to
plants of high-order, although, for plants of dominant fifth- or higher-
order, the design of optimal piecewise~linear switching functions leads

to a surface searching problem of considerable complexity. *1U7‘H0’l
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I. INTRODUCTION

A. PROBLEM STATEMENT

The problem under consideration is the design of a switching func-

tion for the feedback control system shown below.* The plant, whose

Switching
Function Contactor Plant
o - 1
~ u - e
? s'+ a S L sa -
‘ n-1 o

th
transfer function contains only poles, is described by the n -order

linear constant-coefficient differential equation

to -
i

Fe + Du (1.1)

where e 1is an n x 1 column state vector,
F is a known n x n system matrix,
D is a known n x 1 distribution matrix of the control u,
u 1is a bounded scalar with l“lf 1,
and the feedback is obtained by having u = -sgn ¢g(e). The n-com-

ponent state vector e may be the error variable e and its first
(n-1) derivatives or the state variables of two or more coupled plants

of lower-order. It will be assumed that all components of e can be

Double lines denote a vector variable, single lines a scalar,




observed and controlled. The above system can represent either a regu-
lator process with zero input and non-zero initial conditions which are
to be reduced to the state-space origin or a control process with an
input function having one or more eigenvalues identical to those in the
plant, which implies that the input can be imbedded and treated as an
initial condition on the error state vector.

The system is essentially deterministic in that it is not subject
to disturbances. However, the initial conditions or, equivalently, the
imbeddable inputs may be random, The fact that the output of the actu-
ator or controller is bounded implies the existence of a minimum time
in which the initial conditions may be reduced to zero and it is this
time which will be taken as the criterion of performance. Consideration
will be limited to contactor, i.e., bang-bang, actuators for the follow-

ing reasons:
1. Many actuators inherently operate in this manner.

2, Saturating linear actuators which operate in the saturated
mode a large percentage of the time are well approximated
by contactors. '

3. The optimal control leading to the minimum-time response of

the system described by Eq. (1.1) is bang-bang.

The differential equation representing the physical plant has been
normalized with respect to the magnitude of the control force so that
lul = 1. Assuming that Eq. (1.1) is known, the problem is to determine
the switching function O(g) as a function of the state variables so
as to minimize the performance criterion. Equivalently, the problem is
to find an (n-1)-dimensional switching surface described by ¢ = 0
which separates the n-dimensional state-space into two regions, one

where u = +1, the other where u = -1,

B. PREVIOUS WORK

Pontryagin and his co-workers [Ref. 1] have given necessary condi-~
tions which an optimal control function wu(t) must satisfy under the
assumptions described above. However, this optimal control is given in

terms of the adjoint variables whose functional form is known but whose

-2




values are unknown. Using the form of the adjoint variables the optimal
switching surface can be constructed for some relatively simple plants
(second-and third-order) but even then the switching function might have
such a complicated dependence upon the state variables as to be useless
as an engineering solution.

Therefore, attention has been given to quasi-optimal switching func-~
tions which give less than optimal performance but may be more feasible
to implement than the true optimal function. Hubbs [Ref. 2] has used a
switching surface described by the first few terms of a Taylor-series
expansion of the optimal surface about the state-space origin. Although
this technique is valid for systems less restrictive than those under
consideration here, it is feasible for only second-and third-order plants
and works well only when the norm of e (denoted by [ef| ) is small,
say ”g“ < 'ul . Schmidt [Refs. 3,4] has treated saturating linear sys-
tems subject to step inputs by making the feedback gains of one or more
of the state variables be nonlinear functions such that the actuator
comes out of saturation at the same time the equivalent optimal con-
tactor system would switch for the first time. However, when the plant
has lightly damped oscillatory roots the design method is not applicable.
Numerous authors have suggested using the optimal switching surface near
the origin and replacing it by linear segments in the more distant re-
gions of the state-space, such as described by Feld'baum [Ref. 5]

Nonlinear functions useful for plants having lightly damped oscil-
latory roots and subject to large disturbances, say “g” > lul , have
been considered by Flligge-Lotz and Titus [Ref. 6] , but some other pro-
vision must be made for small disturbances. Fllgge-Lotz and Lindberg
[Ref. 7] used the switching function g= e + k e + f(é)E to obtain
good step-function response for the plant with transfer function
1/5(52 + 1) by adjusting f(e) so that the first switching time was
optimal. However, the performance was found to deteriorate rapidly
when the initial values of e and € were not precisely zero. The
simplest possible switching function, first studied by Flugge-lotz
[Ref. 8] , is linear switching, where ¢ is a linear combination of

the states, i.e., (o= Q? e , where ET is the transpose of p. This

~3-




relationship corresponds to the switching surface being a single plane
in the n-dimensional state-space, If the optimal trajectory from a par-
ticular initial condition requires only (n-l1) switchings, it is usu-
ally* possible for a linear switching function to provide an optimal
response for that initial condition and any others requiring the same
switching points by passing a plane (or hyperplane) through the (n-1)
switching points and the origin. Fllgge-Lotz et al. [Refs. 7, 9, 10]
have shown that for some parameter combinations of the general third-
order plant 1/(s + a)(52+ 2 s + 1) the values of the optimal linear
switching coefficients remain relatively constant for initial conditions
along a large portion of the e axis and the linear switching function
can yield good performance. However, for many plant parameter values
and for more general initial conditions, linear switching is unsatis-
factory.

Therefore, one is led to consider piecewise~linear (hereafter abbre-
viated PWL) switching functions in an effort to provide close-to-optimal
response for initial conditions in all or a relatively large portion of
the state-space while retaining much of the simplicity of linear switch-

ing.

C. OUTLINE OF CHAPTERS

In Chapter II, PWL switching functions are described using a second-
order plant as an example. The mathematical formulation given implies

the existence of a performance surface which can be searched to find

*
Necessary and sufficient conditions for linear switching to yield

an optimal trajectory requiring (n~1l) switchings are that:

1. The switching plane contains the (n~l) switching points and
the origin.

2. Those portions of the optimal trajectory corresponding to
u=+1 1lie on one side of the switching plane and those

corresponding to u = =1 1lie on the other side.

An example where (2) cannot be satisfied is the plant with transfer func-
tion 1/s2(s?+ 1) and the initial state (e2)¥= (20, 0, 0, 0).

4=




those switching function parameter values which will yield the minimum
cost. In Chapter III it is shown how to analyze qualitatively the sys-
tem performance with a linear switching function in order to obtain a
starting point for searching the performance surface. Also the qualita-
tive analysis is extended to PWL switching functions. Chapters IV and
V illustrate the design procedure and the type of results which might
be expected by synthesizing PWL switching functions for third- and
fourth~ order plants. The plants considered in detail are described

by transfer functions which have all of their poles on the imaginary
axis of the s-plane, thereby insuring that they cannot be treated as
plants having dominant poles of a lower order. Chapter VI consists of
a summary of the results obtained and suggestions for future investiga-
tion.

It is shown that PWL switching functions which are easily imple-~
mentable can give close-to-optimal responses for a variety of plants
and initial conditions and both gualitative and quantitative procedures
are given for the design of linear and PWL switching functions. It is
felt that this work will help to bridge the gap between the fields of
optimal control theory and control system design, particularly in the

area of satellite attitude and trajectory control.
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11, PERFORMANCE SURFACES FOR PWL SWITCHING FUNCTIONS
AND THE MINIMUM-TIME CRITERION

A, PWL SWITCHING

Since a general PWL function of n variables can be extremely
complicated to generate and analyze and since the main purpose in con-
sidering PWL switching functions is to achieve a function which is
easily implemented, consideration will be limited to only a very re-
strictive subclass of PWL functions. This class will consist of those
functions which are the summation of up to n symmetric PWL functions
of single state variables, where n is the order of the plant. In

other words, the switching function ¢ will be limited to the class

n

o(e) = Z 0, (e;) (2.1)

i=1

where one or more of the ci(ei) may be symmetric PWL functions of the
tvpe shown in Fig. 1.

Examination of Fig. 1 indicates that pil is the slope of the
central portion of Gi’ that piz, pi4, etc. are the breakpoints, and
that pi3, pis, etc, are the slopes after the corresponding breakpoints,
If the ith component qf g 1is not PWL then only pil is defined and
piz, piB’ pi4, piS’ etc. are undefined for that particular switching
function. Since the output of the switching function ¢ goes directly
to the contactor, ¢ can be multiplied by any positive constant without
affecting u(t) or, equivalently, Pp1? the linear switching coefficient
of e » can be set equal to unity. It is convenient to arrange all of
the switching function parameters pij in the array {p} having r
elements which are both defined and arbitrary contained in n rows and
a number of columns dependent upon the maximum number of breakpoints in
any single component Oi. For example, if the switching function for a
third-order plant had its O component defined as in Fig., 1 and both

1

Oy and 03 were linear functions, the array of switching function

-6=




i
slope = pi5
|
Pi3 |
| |
| |
| |
Pi1l |
“Piqa  Pi2 Piz Pig €

FIG. 1. TYPICAL PWL SWITCHING-FUNCTION COMPONENT

parameters would have r = 6 and would appear as

P11 Piz2 P13 Pia P15
{p} = Pay x X X X

1 X X X X

where the x's denote undefined elements.
It should be emphasized that the array {p} , being merely a collec-

tion of numbers, is not a matrix and thus has no algebraic properties.



In the case of linear switching, the switching function may be

written as

where p 1is the parameter vector, i.e., column matrix, whose n com-
ponents are the linear switching coefficients and it obeys the laws of
matrix algebra. If the PWL switching function corresponding to the
array {p} is considered to be a linear switching function represented
by the vector p which was made PWL by the addition of breakpoints and
changes of slope, then the vector p will be the first column of the

array {p} , i.e.,

T
g = (pyys Py Py) -

For second-order plants the restriction of g¢(e) to the class of
functions satisfying Eq. (2.1) involves no loss in generality, as the
most general PWL function in two dimensions is a function of a single
variable, While it is impossible to state precisely what loss in per-
formance will be incurred for higher-order systems by this restriction,
the simplification gained in realizing and analyzing the restricted class
of PWL functions makes it a logical area for investigation before pro-
ceeding to more complicated types.

So far, no mention has been made of the number of PWL components
o 1is to have or the number of breakpoints the PWL ci are to contain.
The emphasis in the work to follow will be upon finding switching funce-
tions with a minimal number of PWL elements and the PWL switching func-
tion will be considered as a modification of a linear switching function.
While no precise statements can be made regarding the minimal number of
PWL elements to be used, it will be shown by the examples presented in
later chapters that, at least in these instances, a significant improve-

ment in performance can be made over that attainable with linear

-8~




switching by introducing only one or two breakpoints. Aside from the
resultant simplicity, a PWL switching function with a minimal number of
elements is of obvious use in an adaptive system where the switching

function is to be adjusted during operation.

B. SPECIFICATION OF THE PERFORMANCE SURFACE

In order to evaluate quantitatively a particular switching function
it is necessary to define a scalar performance criterion, referred to
as the cost, whose value will depend upon the switching function para-
meters. The cost (denoted by J) and the r arbitrary elements of (p}
define a performance surface in an (r+l)-dimensional space and the
desired switching function corresponds to that value of {p} for which
J( {p} ) takes on its minimum value (denoted by I). The problem of
designing the PWL switching function can then be considered as a prob-
lem in searching the performance surface in order to find that value of
{p} for which J( {p}) = I.

For this work, the cost will be defined as

K
JC {p}) = % :;,lwka({p},ei) (2.2)

where k 1is the index corresponding to the different initial
conditions,

K 1is the number of initial conditions used,

t
w, is the weighting coefficient for the k h initial
condition,

o
and is the settling time from e and is dependent upon

T
the switching function parameters {p}

When the values of Wy and g; are fixed by the designer and the sum-
mation is carried out, the cost J becomes a function only of the
switching function parameters (p} .

The simulation results presented in this investigation were obtained

on a hybrid system composed of an IBM 1620 digital computer with 20,000
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decimal digits of memory, a 48 amplifier Electronic Associates TR-48
analog computer,and six channels each of A-D and D-A conversion equip-
ment. With careful programming it was possible to run approximately two
trajectories per second, including setting new initial conditions and
switching function parameter values, sampling the analog voltages to
determine when the states had reached the desired region around the
origin, and calculating the cost according to Eq. (2.2).

For computational purposes, it is necessary to consider the defini-
tion of when a trajectory has reached the state-space origin. Since it
is not feasible in an engineering sense to reduce the states to pre-
cisely zero, and since the final motion of the trajectory will involve
chatter in which the states decay exponentially and hence never pre~
cisely reach the origin, it is necessary to establish some cost-free
region (denoted by S) surrounding the origin, The resulting performance
surface will represent the time required to bring the state to the region
S and not to the origin as originally planned.

For second-order plants where the optimal switching curve for tra-
jectories going exactly to the origin can be easily sketched, the optimal
switching curve for trajectories going to a region S can be obtained
by applying the transversality conditions* to the adjoint vector at the
final time, i.e., that time at which the state reaches S. These curves
are shown in Fig. 2 for the 1/s2 plant, using three representative
shapes for the region S having equal areas.

Since virtually the entire theory of minimum-time control systems
is for trajectories going to the origin, it is desirable to choose the
shape and size of S so that the optimal switching surface correspond-
ing to S will differ as little as possible from that for trajectories

going precisely to the origin., With this in mind, the parallelogram

See Sec. 6 of Pontryagin et al. [Ref. 1] for an explanation and
derivation. Also see Hutchinson [Ref, 11] for a number of examples.
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shown in Fig. 2a has been used for the simulation of second-order plants.
For n=3 the region S is a diamond and its definition is readily
extendable to higher dimensions.

This choice has two other factors which make it desirable. First,
having linear boundaries, it is easily implemented. Second, it is easy
to obtain a very close approximation to the difference in optimal times
for trajectories going to the origin and to the region S, even for
high-order plants. Consider the 1/52 plant for which the optimal
switching curves are shown in Fig. 2a. As long as the switching point
occurs outside the discontinuities in the optimal switching line, the
optimal trajectories going to S will enter it at the points e = + (0,A).
Optimal trajectories going directly to the origin will travel along the
dashed lines in Fig. 2a which are segments of parabolas and will pass
through the points ET =+ (—A2/2,A) which lie close to the surface of

. 2
S. Since Ie = 1 for the 1/s plant, the time required for the

2|

state to go from either of these points to the origin on an optimal tra-

jectory is exactly A seconds. Therefore, the minimum time in which

the state can reach the points gT = + (—A2/2, A) is (To - A) where

TO is the minimum time to the origin. Since the points g? = + (—A2/2,A)

differ from the points ET = + (0,A) by the distance A2/2, when A << 1

the optimal time to reach S will be approximately (To - A) seconds.
For a general second-order plant the above arguments hold when

A <<'1 Dbecause near the origin the trajectories are very close to those

of the 1/52 plant. In addition, the arguments can be generalized to
t

include n h-order plants by using the plant l/sn in place of l/s2 .

Therefore, in the simulation work to follow, the optimal times to reach

S will be assumed to be given by

(T = (1) -4 ALl (2.3)

th
where (To) is the optimal time to reach the origin from the k
k

initial condition.
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In the performance surfaces to be investigated the weighting function

Wy will be chosen so that any initial condition will make an equal con-

tribution to the aggregate cost J. This will be done by making

W, = 1/(TS) . Therefore, in the results to follow, the cost will be
k

defined as

K
JC {p})) = ili Z (Tl) T, (p ), g:) (2.4)
k=1 Sk

and J = 1.0 will imply that each of the K trajectories is optimal.

C. PERFORMANCE SURFACES FOR SECOND-ORDER PLANTS

| gy o | Ty T el
he rather general s

To illustrate some of t
section regarding the specification of the performance criterion and its
effect upon the surface searching process, the l/s2 plant will be con-
sidered. A switching function having oi(el) PWL with one breakpoint,
will be used. Thus r=3 and the PWL switching function parameter array

can be written as

(2.5)

i

P}

where the x's denote undefined elements. The performance surface can
be depicted in the four-dimensional space (r+l = 4) by plotting con-
tour lines of constant J in the plane p12 = constant. Since p11
and p13 are the slopes of oy before and after the breakpoint, it is
apparent that the line pll = p13 corresponds to a linear switching
function. The block-diagram of the system is shown in the sketch below.
Because the form of {p) has been fixed, the cost J({p}) as given
by Eq. (2.4) will be completely specified by the choice of the initial
conditions to be used, namely the K values for gz. The choice of

-13-



these initial conditions determines the shape of the performance sur-
face which must be searched if the best PWL switching function in the
class represented by Eq. (2.5) is to be found. The cost-free region
S will be as shown in Fig. 2a, with A = 0,20,

For this particular plant it is possible to limit the initial con-
ditions to points along the positive e axis with no loss in gener-

1
ality because any stable trajectory must intersect the e axis,

1

although this is not true for n > 2 and for some other second-order
plants. Therefore, for the sake of argument, consideration will be
limited to initial conditions along the e1 axis in the range
0 < e? < 8. Cross-sections of three typical surfaces which were obtained
by measuring J at increments of 0.025 in p, are shown in Fig. 3.

It is found that the surface becomes smoother as the number of
initial conditions is increased. The smoothing effect of using more
initial conditions in the definition of the cost is explained by noting

that the value of J is the average of the cost measured for each of
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the initial conditions used. When {p} 1is such that the trajectory
from one of the initial conditions is optimal, that particular component
of J will be at a minimum. Therefore, there will be a tendency for

J to have fluctuations in its gradient and possibly minima at those
places in the parameter space where one or more of its components attain
their minima, Clearly, the number of places in the [p] space where
this will occur will increase as K, the number of initial conditions
used in measuring J, is increased. However, since J 1is averaged over
the K 1initial conditions, the net effect of any single component upon
d will be reduced as K 1is increased.

Although examination of Fig. 3 indicates that the optimal linear
switching parameter depends upon the number of initial conditions used
to define J, it was found that the optimal PWL switching parameters
did not vary as K was changed from 2 to 8. This indicates that e, =
and 8 are representative of the entire range 1 < ei < 8 and that the
only benefit obtained by using more than these two initial conditions
is in smoothing the performance surface.

For the curves of Fig. 3 the effect of the number of initial con-
ditions used in determining J has been considered by keeping the

breakpoint of ¢ fixed at = 0.20. It is also of interest to in-

1 P12
vestigate the effect of the breakpoint upon the performance surface.

The shape of the performance surface obtained with K = 8 1is indicated

by the contours of J 1in the p13 plane for three values of

P11’ P12

presented in Fig. 4. The point of major interest is that a cost of
J < 1.10 can be found on each of the three plots, although the values

of and p13 corresponding to these optimum values differ con-

P11
siderably. Therefore, the three-dimensional parameter space {p} con-
tains a region within which J < 1.10 and this region extends at least
= 0.20 to the plane

from the plane = 1.00. Since J > 1.00

plz p12
by definition and I < 1.08 for each of the three planes shown, it is

apparent that no substantial reduction in cost can be obtained by vary-
ing the breakpoint p12
and the slopes p11 and p13 have been set to the optimal values cor-

responding to that value of p12 used. However, from an engineering

-17-
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point of view, the PWL switching functions with Pig = 0.20 or 0.50

are preferable because the minima are broader than when = 1.00,

P12
In the sketch below the three PWL switching lines are compared with the

optimal switching line which is composed of two portions of parabolas.

optimal
switching
line

Y

t t t t

2 4
optimal PWL
switching lines
of Fig. 4

In this section it has been shown that the design of PWL switching
functions can be treated as a problem in searching a performance sur-
face whose shape will depend upon the choice of initial conditions used
in its definition, While it is not practical to give rigorous conditions
which are sufficient to ensure that the performance surface can be
searched, it has been possible, by considering second-order examples,
to formulate the following two rules which would aﬁpear to be necessary
for the existence of a performance surface which can be searched by one
of the standard surface searching techniques. The sufficiency of these
rules is demonstrated in specific cases by performing the surface search
in order to design linear and PWL switching surfaces for several plants

of second-, third-,and fourth-order.
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First, a sufficient number of initial conditions should be used so
that the size of any local minima and the fluctuations in surface gra-
dient are small enough to be tolerated by the particular searching
procedure being used. Second, it is necessary that the initial con-
ditions used in defining J be representative of all of the initial

states to which the system might be subjected.

D. SURFACE SEARCHING TECHNIQUES

The task of searching surfaces of the type and dimensionality en-
countered in designing PWL switching functions by the methods proposed
here is far from trivial and is an area of current investigation.
Factors which tend to complicate the procedure are the possible pres-
ence of relative minima, a complicated functional dependence between
J and the PWL switching parameters (p] , and a high dimensionality
of the parameter space. A detailed investigation of surface searching
techniques has not been undertaken. Instead, two relatively unsophis-
ticated techniques were used to illustrate the feasibility of the
search process for representative second-through fourth-order plants
with PWL switching. For a detailed discussion of the application of
gradient and relaxation procedures to the searching of multiparameter
surfaces in the presence of noise, the reader is referred to the work
of Kushner [Ref. 12] . Brown [Ref. 13] also gives an excellent dis-
cussion of the various gradient procedures for searching surfaces in
the absence of noise.

The first of the two search techniques used is a modification of
the method of steepest descents. In the method of steepest descents
the iterative process for adjusting an r component parameter vector

R is [Ref. 13]

-]

m+1 - Em _ 7111 (aJ/aE)T (2.6)

th m
where R is the parameter vector before the m iteration, ¥y is the

th
value of a positive coefficient during the m iteration, and
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3J/OR = (aJ/aRl, cees

representing a discrete feedback process where the coefficient <y is

BJ/aRr). Equation (2.6) can be considered as

the gain in the feedback loop. If this gain is too low, the convergence
of R to its optimum value will be slow, and if ¥ is too high the
feedback process will be unstable. Because of the relatively complicated
shape of the surfaces to be searched, it proved to be beneficial to make
¥ dependent upon the results of the process, i.e., to make it be an
adaptive parameter, The details of the gradient procedure used in this
investigation are presented in Appendix B.

The gradient search procedure worked well when the parameter space
was limited to two dimensions, such as the surface depicted in Fig. 4a
and in designing a linear switching function for a third-order plant
(see Chapter IV). For the performance surface shown in Fig. 4a the
search procedure typically reduced the cost from 2.0 to below 1.10 in
five iterations. However, when the same procedure was used to search
three parameters simultaneously, its convergence was generally quite
slow. Due to the geometrical difficulties of analyzing a three-parameter
search and the fact that the memory of the available digital computer
was virtually saturated, the gradient process was not pursued further,
However, it was felt that the simple logic which was successful for two
parameters was not sophisticated enough for varying three parameters
simultaneously. If more computer memory were available, the methods
proposed by Kushner [Ref. 12] would appear to be worth consideration.

When the dimensionality of the parameter space is large, an alterna-
tive to using the gradient procedure is a random perturbation search
procedure. Because the random search procedure involves perturbations
about a nominal point which are small compared to the dimensions of the
parameter space, it is distinct from a Monte Carlo approach in which
points throughout the parameter space are chosen randomly, in the hope
that one will be chosen at or near the optimum value of R. The random
search is particularly attractive for two reasons. First, the logic of
the procedure is extremely simple and requires very little computer
memory. And second, if 5@ is caught in a relative minimum of J,

there is the possibility that the random perturbation of the parameter
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vector will be large enough to move §P+1 out of the depression sur-
rounding the relative minimum so that it can reach the absolute minimum.
The perturbations of the parameter vector are obtained by adding to
B? a vector éﬁ? , each of whose components is an uncorrelated,
approximately-Gaussian random variable with zero mean and a standard
deviation of Vﬁfé . The approximately-Gaussian numbers are obtained
by adding six random numbers uniformly distributed between -0.5 and
0.5 and multiplying their sum by the positive scale factor V to yield
the desired standard deviation [Ref. 14] .
The search logic consists simply of measuring the cost corresponding

to the perturbed parameter vector and comparing it to the lowest value

+

found by the preceding iterations. A new nominal vector 5? 1 is
chosen according to

m+1 - Rp + @

- - —1i
if

I@E" + B < I@EY
otherwise a new random perturbation £§§+1 is chosen. 1If a value for

+1

Rm is not found by the time i reaches the preset limit, N, it is

assumed that EP is near a minimum and the standard deviation V/Jb
should be reduced. For example, in the method used, after i reaches
32, V is halved and the process repeated, starting again with i = 1.
If V 1is halved several times without finding a value of J 1lower
than J(B?) or reaches some preset level, it is assumed that a mini-
mum has been found. As with the choice of 7y for the gradient search,
the initial value of V is not critical, due to its adaptive nature,

provided that it is not chosen too low.
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II1I. QUALITATIVE DESIGN PROCEDURES FOR LINEAR
AND PWL SWITCHING FUNCTIONS

A. GENERAL

When the plant is of third-or higher-order, the number of switching
function parameters can lead to a performance surface of such a high
dimensionality that it can be an extremely difficult task to search for
the optimum. In order to minimize the dimensionality of the perform-
ance surface it is very desirable to know which of the linear switching
function parameters have the smallest influence upon system perform-
ance so that they may be omitted as PWL functions. Another difficulty
occurs when the plant has poles which are not well damped, which rep-
resents a large portion of the interesting control system problems. In
this case the response for values of [p} in all but a relatively small
portion of the r-dimensional parameter space may lead to unstable*
trajectories. Since the performance surface does not exist in these
regions any search technique dependent upon the surface gradient cannot
be applied there. Therefore, attention will be given to methods of
obtaining some idea as to where the performance surface exists and to
a means of establishing those parameters to which the cost is most sensi-
tive. As an illustration of the procedures developed, second-order
examples will be worked before proceeding to the more complicated third-
and fourth-order plants for which the methods are intended. At that
time several problems peculiar to plants of order greater than two will

be discussed.

B. DESIGN OF LINEAR SWITCHING FUNCTIONS

The method of designing an optimal**PWL switching function will be

to start the search procedure with a linear switching function which

%k
Unstable will be used to imply that the state-space origin is not
asymptotically stable.

*k
An optimal PWL switching function is the optimal function for the

PWL components o; and number of breakpoints corresponding to {p}
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works reasonably well for all of the K initial conditions and then to
modify it by making one or more of its components PWL. However, there
is no general procedure for the synthesis of linear switching functions
such as there are for strictly linear systems.

As was mentioned in Section I-B, Flﬂgge-Lotz and her co-workers
[Refs. 7, 9] have synthesized linear switching functions for particular
third-order plants and particular types of initial conditions by choosing
the linear switching coefficients pi to be a good approximation to
those coefficients which reduced the state to the origin in (n-1)
switchings as one component of the initial state was varied over the
range of interest. While this approach can give good results in spe-
cific instances it has several drawbacks which limit its applicability.
First, for plants with oscillatory roots there are large regions of
stable response from which the origin cannot be reached in (n-1)
switchings. Second, the value of p corresponding to a particular
initial condition must be determined, presumably by computation of
trajectories or computer simulation. Third, the effect of using a
linear switching function designed on the basié of initial states along
the e1 axis for slightly different initial states can result in unstable
trajectories when the plant is of third-or higher-order. Finally, the
manner in which the variable coefficients obtained by considering dif-
ferent initial states are to be approximated by the constants P and '
the consequences of this approximation are not apparent without further
simulation of the system.

Schmidt [Ref. 3] has used the root-locus method to study saturating
linear systems of third-and higher-order by treating the limiter as an
equivalent gain which decreases after it reaches saturation. This
interpretation yields an equivalent set of closed~loop poles which coin~
cide with the closed-loop poles of the unsaturated linear system when
the limiter is not in saturation and travel along the root loci toward
the open-loop plant poles as the limiter goes further into saturation.
He has shown by simulation studies that the root loci can be a useful
tool for analyzing the response of this type of system in a qualitative

manner. Following this approach will allow a qualitative interpretation
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of the switching plane in terms of the root loci and permit one to
obtain useful information regarding both linear and PWL switching
functions.

Kalman [Ref. 15] has investigated the stability of quite arbitrary
nonlinear systems by applying the root-locus techniques to the incre-
mental differential equation. However, when the nonlinearity is a con-
tactor the only two incremental equivalent gains are zero and infinity.
For this reason, it appears to be more reasonable to choose the equiva-
lent gain so that its output coincides with that of the contactor for
the same value of ¢. Since u = -sgn 0 and sgn g = =- o/lcl, the
desired equivalent gain is K(g) = -l/|0| . For the sake of comparison,
the describing function for the contactor is -4/n|o| which is approxi-
mately the same as —1/[o| . Since no quantitative results are to be
obtained by using this equivalent linearization the small difference
between the two is inconsequential.

The linear switching function can be expressed as
oe) = Py + Pyey * ...+ pe . (3.1

Since the switching function is followed by the contactor, one of the
p; may have any positive value without affecting u(t), so p, Wwill
be set equal to unity in the work to follow. If the vector e 1is com-
posed of the error variable and its first (n-1) derivatives, as is

often the case, then

n-1
d e de
ole) = —1 t .-t Py g * P - (3.2)

dt

Taking the Laplace transform of Eq. (3.2) yields the transfer function

ig:; S Py s+ Py (3.3)
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and the total system can be represented by the block-diagram shown in

Fig. 5a. The fact that the transfer function (3.3) obviously cannot

1 e(t)

n +
S+ LN 3 ao

n-1 g u
: K
s THe.pg (o)

a. e(t) as Output Variable

u S +P1. a(t)

n
8§ + ..o + a2

K(0)

b. 0(t) as Output Variable

FIG. 5. BLOCK~DIAGRAMS OF THE LINEARIZED SYSTEM

represent a physical system, since it has no poles, is of no concern
because it has been assumed that the (n-1) derivatives of e have
been generated by the plant and the switching function represents only
their linear combination.

The zeros of the transfer function can be found by factoring the

right-hand side of Eq. (3.3) into the form

(’ (n-2)/2

(s-q) TT (52+ 20, ws +w12) n even
1 i=1
ST+ L.+ Py =9 (3.4)
(n-1)/2
]_T- ( % 2 + W 2) dd
s Ciwis 3 n o
=l
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where the wi and Ci are the natural frequencies and damping ratios,
respectively, of each pair of zeros and, if n is even, (g describes
a single real zero.

When n > 3 in Eq. (3.3) or when the system is composed of two or
more coupled plants, it will be more convenient to use the parameter
vector g which locates the zeros of the transfer function from the
control u to the switching function ¢, rather than p, the linear
switching function coefficients. The (n-1) components of £ are

defined as

2 .
w(j+l)/2 j=1,3,...,n~2
E. = 2t . w, j=2,4,...,n-1 (3.5)
J j’2 j/2
a jJ=n-1 if n even.

N

If the blocks denoting the switching function and plant in Fig. 5a
are combined, so that the error is no longer considered a variable, the
pseudo-system of Fig. S5b is obtained, having (n~l1) zeros, n poles,
and the variable gain K(g) = -l/Icl. This system, whose output is the
scalar function ¢(t), can be analyzed in a qualitative manner by con-
sidering the root loci. The entire range of the equivalent gain K(g)
from zero to infinity is of interest.

Since ¢ is the linear combination of the n components of e
given by Eq. (3.1), e = 0 implies that ¢ = 0 but the converse is not
true. This being the case, there are two conditions which are necessary
in order for the state-space origin to be asymptotically stable. First,
the average values of ¢ and 6, the output of the switching function
and its derivative, must both be reduced to zero. Second, the chatter
motion when ¢ = 0 must be such that e approaches zero.

It is well known that the behavior of e(t) during chatter can be
easily determined for systems of any order by setting >o in Eq. (3.2)
equal to zero, yielding the following (n—l)St-order homogenous differ-
ential equation for e:

d e de
+ ... + —
n-1 P g%

+ ple =0
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Examination of this differential equation indicates that the average
motion in chatter is precisely that of a linear system having closed-
loop poles at the zeros corresponding to the switching function. For
the chatter motion of e to be asymptotically stable the switching
function zeros must be located in the left half of the s~plane (here-
after abbreviated LHP), implying that the coefficients of s in Eq.
(3.4) must satisfy the Routh-Hurwitz criterion.

The first condition, namely, that ¢ and ¢ be reduced to zZero,
falls in the realm of the celebrated Aizerman's conjecture which deals
with the stability of systems of the type shown in Fig. 5b. As des~-~
cribed by Hahn [Ref. 16] , the conjecture states that if a single non-
linearity f(0) is replaced by a linear gain and the linearized system
is asymptotically stable for all values of the gain between the limits
K* and K", then the nonlinear system is asymptotically-stable-in-the-~
large for any continuous single-valued nonlinearity satisfying the con-

dition

£(0)
o

K' < < K"

Hahn states that the conjecture has been proven valid for all second-
order plants but invalid for certain third-order plants having two
zeros in their transfer functions.

The version of Aizerman's conjecture restricted to a contactor non-
linearity will be used to establish design criteria on the root loci
and those regions of the s-plane in which they may lie. If the root
loci remain entirely in the LHP for all O < K(g) < o it will be
anticipated that the nonlinear system is asymptotically-stable-in-the-
large. If the loci enter the RHP as the equivalent contactor gain de-
creases and remain there for all lower values of gain, it will be
anticipated that the nonlinear system will yield unstable responses for
some initial conditions in the state-space. Should the loci correspond
to those of a conditionally stable system it will be anticipated that
the system has a finite region of stability, although Kalman [Ref. 15]
states that if the loci enter the RHP only slighly and then leave,
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there may be no actual unstable region in the state-space. Generally
speaking, the criterion is followed that the equivalent poles, which
are functions of ¢, should remain as far to the left in the s-plane
as possible,

This general rule can be made more specific when the plant has
roots near the imaginary axis. In that case, a function which has con-
siderable utility is the angle with which the locus departs from an
oscillatory pole. This angle, denoted by ¢, is measured from a line
parallel to the real axis of the s-plane and passing through the oscil-

latory pole having positive imaginary part, as indicated in Fig. 6. If

A Im[s]

+1 T X—

Re[s]
£ =-0.2
vy = 0.98

FIG. 6. TYPICAL ROOT-LOCUS PLOT FOR THE 1/(52- 0.4s + 1) PLANT
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the oscillatory poles in question lie exactly on the imaginary axis
then, unless the switching function parameters place ¢ in the range
90° < |®| < 270° the linearized system cannot be asymptotically-stable-
in-the~large since the loci enter the RHP.

It should be emphasized that Aizerman's conjecture will be used
only in a qualitative sense to obtain parameter values for initializing
a surface searching procedure. Therefore, any conclusions regarding
the stability of a nonlinear system obtained by applying the conjecture
would be verified at the start of the search procedure because the
measurement of the performance surface requires the computation of the
system trajectories.

In addition to the design criteria derived from the root locus, it
is possible to obtain one more criterion by considering the trajectories
in the n-dimensional state-space. It has been observed during a large
number of analog computer runs with a variety of third- and fourth-order
plants and linear switching functions that the stability of a nonlinear
system is characterized by the existence or absence of a unique symmetric
periodic solution having two control reversals each period.* If the
plant poles lie in the LHP the periodic solution, henceforth referred
to as the dominant periodic solution, is stable and it experimentally
is observed that large initial states will converge to it and never
reach the origin. When all of the plant poles are not in the LHP it is
observed that the dominant periodic solution is unstable and initial
states lying outside the stability boundary in the n-dimensional state-
space will approach the dominant periodic solution before growing with-
out bound. In either case, it has been observed that the absence of the
dominant periodic solution implies that the system will be stable for

any initial conditions which can be simulated on the analog computer.

*Other symmetric periodic solutions involving more than two rever-
sals may possibly exist, but only those having two reversals will be
considered here. These solutions are the only periodic motions con-
sistently observed in all classes of systems being simulated. When
n=2 the dominant periodic solution is the limit cycle having two con-
trol reversals per period.
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If the trajectories of the plant are examined in a canonical space
where the projections of the trajectories have a relatively simple geo-
metry, the dominant periodic solution can generally be deduced by using
the conditions of symmetry and periodicity in order to obtain a locus
of possible switching points in the state-—-space. Since the switching
points must lie on the switching plane the periodic solution can occur
only when the locus of possible switching points intersects the switch-
ing plane. For this reason it is possible to express some measure of
the size of the periodic solution, such as the amplitude of a state
variable, in terms of the switching function parameters.

The periodic solutions obtained in this manner are identical to
those obtained by construction of the Hamel or Tsypkin* loci. While
the Hamel and Tsypkin loci can be applied in a straightforward manner
to systems having nonlinearities considerably more general than a per-
fect contactor, they are not in a convenient form for use with switch-
ing surfaces having more than two dimensions.

To summarize, the criteria for the qualitative design of a linear
switching function are:

1. Keep the switching function zeros as far to the left in the

s=plane as possible by minimizing their maximum real part.

2. Keep the equivalent poles of the linearized system as far to
the left in the s~plane as possible by optimizing a suitable
measure such as the angle of departure or cross-over gain on
the root loci.

3. Maximize the size of the dominant periodic solution and, if
possible, eliminate it entirely.

One or more points in that region of the £ space within which all
of the three criteria are satisfied in a reasonable manner can be used
to initiate the search of the performance surface for the optimal linear
or PWL switching function parameters, or the cost can be evaluated at
several points to determine a linear switching function which will pre-

sumably be close to the optimal.

*
See Chapter 26 of Gille, Pelegrin, and Decaulne [Ref. 17]
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The methods described in the preceding section for analyzing linear
switching functions will be applied to the second-order plant with
transfer function 1/(sz+ 2Cs + 1) in order to show their usefulness
and the interpretation of the results. The differential equation des-~

cribing the system is

) 0 1 0
e = e + u (3.6)
-1 2L 1
T .
where = (e,é) and |u| = 1.

It is easier to construct the phase-plane trajectories of the system if

the canonical variables defined by the following transformations are

used:*
x) ) 1 ¢ e [ ) 1 ~C/y X, (3.7a)
X, 0 v e, e, 0 1/v X,y (3.7b)

where v =~N1 - £2 anda |f] < 1.

The trajectories of the canonical variables are logrithmic spirals with
T
foci at x = + (u,0).
Since the plant is of second-order the linear switching function

given by Eq. (3.1) takes the form

o = e2 + ael (3.8)
and Eq. (3.3) becomes

2(s) _

EGs - S+ (3.9)

*
See pp. 124-129 of Flﬁgge-Lotz and Yin [Ref. 18] for a derivation.
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Therefore, the switching function is represented in the s-plane by a
single real zero and the plant by two poles whose location depends upon
the parameter (.

Consider the situation when ( = -0.2. As seen in Fig. 6, the poles
are a complex pair slightly into the RHP so that some portion of the
root loci must lie in the RHP, no matter what value ¢ has. According
to the arguments of the previous section there will be some region of
the phase-plane for which the trajectories are unstable for any linear
switching function. 1In Fig. 7 the stability boundaries in the canonical
phase-plane and the corresponding root-locus plots are shown for several
representative values of (. By setting Eq. (3.8) equal to zero and
applying the transformation of Eq. (3.7b), the equation of the switching

line in the canonical space is found to be

e (12 ) % -

The manner in which the equivalent linear system, i.e., the root-locus
plot, depicts the salient features of the nonlinear system, i.e., the

phase-plane plot, is described below:

1. Figures 7a and b (0= 4). The zero is well .in the LHP,
implying that the chatter motion decays rapidly (time
constant = 1/4 second). However, the angle of departure
of the locus from the upper pole is only slightly over
90° meaning that the locus exists for an appreciable
distance in the RHP. This implies that the stability
region may be smaller than that for « = 1, where ¢
has a larger value. Comparison of the stability regions
in Figs. 7a and ¢ verify that this is the case.

2., Figures 7c and d {(a = 1). The zero is still well in the
IHP and ¢ has a larger value than for « = 4, implying
that the chatter motion is stable and the region of
stability should be larger, which it is.

3. Figures 7e and f (o = =1). Again the loci leave the
poles with ¢ considerably closer to 180° than when
@ = 4, implying a large stability region. However, the
zero in the RHP means that the chatter is unstable and
the state can never reach the origin and remain there,
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The phase-plane plot indicates that the nonlinear system
has gained a stable limit cycle toward which any trajec-
tory starting inside the stability boundary will move,
even one starting at the origin.

Of the three possible switching functions shown, the one with @ = 1
would presumably represent the best choice, a conclusion which can be
drawn readily from the root loci. If O < & < 1, the chatter motion is
stable but the time constant becomes large, approaching infinity as «
approaches zero. However, the point of this discussion has been only to
illustrate the application of the design procedure and hopefully to give
the reader some confidence in its utility. It will be found to be con-
siderably more useful in the higher-order examples to be worked later.

It is interesting to note that if the sign of the switching function
had been reversed (i.e., pn < 0) the feedback would be positive and one
would expect the nonlinear system to be unstable, as it is. The root
loci reflect this situation by requiring use of the 0° loci rather than
the 180° loci. Since the positive real axis to the right of the last
real singularity is always on the o° loci, such a system would always

be unstable.

C. DESIGN OF PWL SWITCHING FUNCTIONS

From the discussion of the previous section it is apparent that as
the zeros corresponding to the linear switching function are moved to
the left in the s-plane the rate of decay of the chatter motion is in~-
creased and presumably the cost for small disturbances is reduced. How-
ever, as they are moved further to the left the zeros exert a decreasing
influence upon the loci departing from the poles. If the plant has
three or more poles and no zeros are present, at least one of the loci
will enter the RHP. Shifting the zeros well to the left of the poles
will make the loci approach these "no-zero~-loci." Therefore, when
n > 3, there is a limit to how far the zeros may be moved to the left
in the s-plane without causing one or more of the trajectories to be-

come unstable,
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In an effort to have both a rapidly decaying response for small dis-
turbances and a large region of stability it is reasonable to consider
moving the switching function zeros to the right or left in the s-plane
depending upon the state of the system.

Linear switching constrains the designer to a fixed set of zeros,
but the PWL switching function can be treated in a qualitative sense as
a shifting of the zeros, dependent upon the state vector e. This shift-
ing of the zeros is accounted for by treating the PWL functions oi(ei)
as equivalent gains which are raised or lowered when ei exceeds the
break points. This same procedure has been used by Schmidt [Ref. 3] to
compute nonlinear functions of a single state variable such that the
switching function zeros move in a manner which is deemed desirable.
Because the shifting of the zeros by means of the PWL functions is a sec-
ond equivalent linearization beyond the linearization of the contactor,
neither one of which can be justified on a rigorous basis, any results
derived from its application should be used with caution and must be
subjected to computer verification.

The first problem to be solved in the design of a PWL switching sur-
face is the selection of the component of the switching function to be
made PWL and of reasonable values which the parameters describing this
component should have. These preliminary steps are essential if a per-
formance surface suitable for optimization is to be found. The general
criteria described in the previous section will be followed in solving
this problem.

If it is possible to express the desired zero shifting in terms of
a root-locus index such as angle of departure whose value is to be in-
creased or decreased as the zeros shift, then the partial derivatives
of this quantity with respect to the linear switching function parameters
may be evaluated. By knowing the partial derivatives and also the ap-
proximate ranges over which the state variables will vary, the designer
can obtain a qualitative indication of the manner in which the switching

function components should be made PWL.
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According to the above arguments, there are two conditions which are
necessary in order to improve the system performance by making one of
the components of @, say oi(ei) PWL. First, the partial derivative
of the root-locus index with respect to Py should be as large as possi-
ble. Second, there must be a large enough difference in the range over
which e, varies for large and small disturbances to insure that the
change(s) in slope at the breakpoint(s) of ci(ei) will affect the
responses for large disturbances but not those for small disturbances.

Also, the switching function can be made PWL on the basis of the
dominant periodic solution. This is accomplished by choosing the PWL
parameters so that the intersection of the switching surface and the
locus of possible periodic solution switching points yields as large a
periodic solution as possible. It is clear that if the periodic solu-
tion corresponding to a particular linear switching function is to be
enlarged or eliminated, the breakpoint of the PWL oi must be smaller
than |e.| at its switching points.

The partial derivatives of the angle of departure of the locus from
an oscillatory pole with respect to the switching function can be eval-
uated in the following manner. The angle of departure is a property of
the root locus and, since the pole locations are fixed, it must be a
function of the (n-1) zero parameters 51 . Furthermore, the gi
define the roots of the (n-l)St-order polynomial with coefficients
pj as indicated in Eq. (3.4). Therefore, the n partial derivatives

defined by

oo Jolo b oo

69 = apl y —gp—z, c o ,?p_n‘

may be found by applying the chain rule of partial differentiation,

n-1 3
£.
_%9_ = ;ﬁ _%%_ _S_l j=1,2,..,n. (3.10)
P iz1 1 %3
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if Pp = 1 the value of a¢/5pn cannot be found by applying Eq.
(3.10) because P will not appear as a variable in the equations for
g.. On the other hand, since there is one arbitrary relationship be-
tween the p. there must be a corresponding relationship between the
components of 5¢/ag . To derive this relationship it is noted that,
since the switching function is followed by a contactor, the linear
switching coefficients pj can be multiplied by any positive constant
without affecting either u(t) or the locations of the zeros.

Therefore, if each component of P 1is multiplied by the constant

(1+ €) where € is arbitrary, it follows that
o(p + ep) = o(p)

If e <<1, ¢(p = €p) may be expanded about the point p and all terms
2
of order ¢ and higher dropped, yielding

n
oo
o(p + €p) = o(p) + € Zl Py Tp;
J=

Since the above two equations must hold for arbitrary € , it follows

that

oy
pj —SET = 0, (3.11)

n
- J

j=1

so the nth component of 5¢/39 can be found if the other (n~1) are
known, Using Egs. (3.10) and (3.11), the equations for the n partial

derivatives can be written as

n-1 ae
_%9_ - BZ _E_l ji=1,2,...,n~1 (3.12a)
pj i=1 1 pj
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and

= - . . 3.12b
5 ) 05 5o ( )

A simple example of the calculation of 5®/59 and its use in the
PWL design is given by the plant with transfer function l/(s2 - 0.4 5 + 1)
which was treated in the previous section. From Eq. (3.5), with n = 2,
it follows that the zero parameter vector é is simply the scalar
51 = . By comparing Egs. (3.3) and (3.9) it is apparent that the linear
switching parameter vector p 1is given by BT = (@, 1). Since the root
locus in the vicinity of the poles is a circle centered at the zero (see

Fig. 6), the angle of departure is given by

Because n = 2 and gl = p,, Eq. (3.12a) reduces to

% _ 0o
30, %,
and Eq. (3.12b) reduces to
acv:_p ok
Sp, 1 "9p

Solving for 5@/5@1 and substituting g for &1 yields

_%9_ = _ oy
(S o2~ 2ta + 1 o2~ 2tq + 1
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Figure 8 shows the two components of 5¢/BB plotted against the zero
location « , where the values of ( = -0.2 and vy = 0.98 have been
used. The fact that acb/apl < 0 when >0 implies that the effec-~

tive value of ¢ can be increased by making o be PWL, with a de-

1
crease in slope at the breakpoint. Likewise, making Oy be PWL so that
the slope is increased at its breakpoint should improve the size of the
stability region.

The other condition necessary for the system performance to be im-
proved by making a particular switching function component ci PWL is
that ei must range over a set of values large enough so that it would
exceed the breakpoints of ci. For this particular plant both components
of e will become large if either one does, due to the oscillatory
nature of the poles. Therefore, one would expect that making .either
one of the ¢, PWL would improve the region cof stability while retain-
ing a relatively good small-disturbance response. This should be no
surprise because, as was mentioned in Sec. II-A, when the state-space
is only two~dimensional the same PWL switching function can be obtained
by making either one of the components PWL.

To give a qualitative picture of the effect of making 01 a PWL
function with one breakpoint consider Fig. 9. The linear portion of the
switching function corresponds to Q= 4 which results in a good small-
disturbance response but a small region of stability (see Fig. 7a). The
breakpoint and change in slope of g, have been chosen so that the
effective value of ¢ has been raised for the larger states. Examina-
tion of the sample trajectories indicates that the origin is stable for
all states within the limit cycle shown, which is virtually the largest
stability region obtainable with Iu! < 1. Therefore, the effect of the
PWL switching function shown has been to provide a substantial improve-
ment in the combined large-~ and small-disturbance response over that
obtainable with linear switching, at only a small increase in switching
function complexity.

To illustrate the second design criterion the PWL switching function

is examined from the point of view of its effect upon the size of the

periodic solution. In this second-order case the periodic solution is
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the unstable limit cycle outside of which all trajectories grow without

bound., The equations for the locus of possible switching points in the

canonical space, expressed in terms of the quarter-~period Vs are®

~sinh 2{y and x_ =T sin 2vy
cos 2w + cosh 20y 2 cos 2w} + cosh 20y °

X, = +

1

When linear switching is used with (o = 4 the switching line inter-
sects the lccus of possible switching points shown in Fig. 10 at the
points Nl and Nz, and the resulting stable region is as shown in
Fig. 7a., When the switching function is made PWL so that O = 0 along

the dashed line, the intersections of the switching line and the locus

of periodic solution switching points move from Nl and Nz to Ni
and Né giving the considerably larger region of stability shown in
Fig. 9.

Finally, the merits of the PWL switching function over linear switch-
ing can be evaluated on the basis of how well each one approximates the
optimal switching curve. In Fig, 11 the optimal curve, which was first
found by Bushaw [Ref. 19], is compared with the linear and PWL switch-
ing lines discussed in connection with Fig. 9. It is apparent that the
PWL curve yields a considerably better approximation to the optimal

curve than does the linear switching line.

*

The equations in terms of €y and e, are given by Flﬂgge-Lotz
[Ref. 8] and can be transformed to the canonical variables by using
Eq. (3.7b).
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IV. THIRD-ORDER EXAMPLE

A. STATEMENT OF THE PROBLEM AND OUTLINE OF THE SOLUTION METHOD

As a first example illustrating the design of a PWL switching func-
tion and the types of plants and initial conditions for which PWL switch-
ing can be expected to give good performance, the plant with transfer
function 1/s(s2+ 1) is considered. Schmidt's design method [Ref. 3]
based upon the first switching instant being optimal cannot be applied
to this plant because of the undamped oscillatory roots. The design
method of Fligge-Lotz and Titus [Ref. 6] was derived specifically for
this plant but Kashiwagi [Ref. 20] has shown that the method fails to
yield satisfactory responses when the plant poles are moved more than
moderately to the left in the s-plane, (say to the left of Re [s] = =-0.3).
Because the plant with all three roots on the imaginary axis (two imagi~
nary and one at the origin) presents a more challenging design problem
than the one with well-damped roots, it will be examined first in con-
siderable detail. To verify that the damping of the roots poses no
problem to the proposed design methods and to obtain a quantitative
comparison of PWL switching functions to the quasi-optimal switching
function of Flﬁgge—Lotz and Titus in this situation, the plant with
transfer function 1/(s + 0.5)(s2 + 0.8s + 1) will be considered briefly
at the end of the chapter.

The differential equation of the l/s(sz+ 1) plant has the form

0 1 0
e = [0 0 1] e+ (0] u (4.1)
0 -1 0 1
T . e
where e = (e,e,e ) and Iul =1,

It is assumed that the control system is subject to step-~function
inputs, which are equivalent to having initial conditions along the ey
axis. The initial values of e will be taken as the integers
1, 2, ...,8 and the cost function is given by Eq. (2.2) with X = 8,

namely,
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8

1 1
I{p) = 3 Z T T Upd o) . (4.2)
k=1 Sk

The cost-free region surrounding the origin is defined by the in-

equalities

/'|e1 + 0.5 e ] < 0.10

.. ) le; - 0.5 5] < 0.10
le, + 0.5 eg] < 0.10

\\|e2 - 0.5 e,| < 0.10

This region, which is sketched below, is the extension to three dimen-

sions of the parallelogram used in the second-order example of Chapter II.

optimal
trajectory
to origin
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As a consequence of the relatively simple geometry of the trajec-
tories in the canonical space, the optimal times for the initial states
along the e axis to reach the origin, (To)k, were evaluated by find-
ing a control ﬁ(t) which transfers the state to the origin and maxi-
mizes the Hamiltonian. Since this control is unique for linear plants
and the minimum-time criterion,* ﬁ(t) must be the optimal control.

The values of To corresponding to the initial conditions used to de-

fine J are given below.

e° 1 2 3 4 5 6 7 8

To(sec.) 3.09 3.92 4.56 | 5.12 5.64 6.14 8.97 9.95

Alternatively, the T0 can be obtained by using the method of Fligge-lotz
and Yin [Ref. 18] . The approximate optimal times to reach the region
s, (Ts)k, are found by using Eq. (2.3) with A = 0.20.

The following canonical transformation will be used at times:

0 1 1 0o -1
X = 4} 1 0 e ; e = 0 0 X (4.3a)
0 0 1 0 0 1 (4.3b)

In the space the differential equation becomes

| ™

Examination of the preceding differential equation will show that for

constant u the xl coordinate changes linearly with time while the

X, and X3 coordinates describe circles about the points X, =+ U,

Xg = 0.

*
See Chapter 3 of Pontryagin et al. [Ref. 1] .
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When linear switching is used, the switching function takes the

form of Eq. (3.1) with n =3 and p, =1, namely,
oe) = P8 *+ Pyy * ©3

From Eq. (3.5) and a comparison of like powers of s in Eq. (3.4) the
two-component linear switching-function parameter vector g is seen to

be

£ w Py

&2 = ZCUJ = p2 . (4.4)

Having defined both the system and the cost function, the problem
is to design a PWL switching function which minimizes the cost J({p}).
The first step is to obtain a preliminary linear switching function by
applying the methods described in Chapter III. This design is used to
initiate the linear switching performance-~surface search on a hybrid
computer and it is demonstrated that this surface can be readily searched
to obtain the optimal linear switching function. Following this, an
optimal PWL switching function will be found by applying the other tech-

niques of Chapter III and searching the resulting performance surface.

B. LINEAR SWITCHING DESIGN GUIDES FOR THE THIRD-ORDER EXAMPLE

The following three criteria are used in designing the linear

switching function:

1. The maximum real part of the switching function zeros is
minimized.

2. The angle of departure of the root locus from the complex
- o
poles is kept close to 90 .

3. The size of the dominant periodic solution is maximized.

The three design guides used in evaluating the above criteria are eval-

uated in terms of £ 1in this section.
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FIG, 12, TYPICAL ROOT=-LOCUS PLOTS FOR THE THIRD-ORDER EXAMPLE

1. Maximum Real Part of the Zeros

As shown by the root loci of Fig. 12, the maximum real part of the

zeros (denoted by —Oﬁ) is given by

Ew 0< <1
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The line in the £ plane corresponding to £ =1 is €2 = 2~/gl
By using Eq. (4.4) to write the preceding equation in terms of 51 and
€2 and then manipulating it so that €2 is expressed as a function of

51 and Qs the lines in the £ plane of constant o, are found to be

( 20
m

2
52 = 1 gl > o - (4.5)
Q g1 + Qﬁ
m

These lines are plotted in Fig. 13a for representative values of Qﬁ.

2. Angle of Departure of the Root Locus from the Complex Poles

The use of the definition of the 180O root loci and the geometrical
relationships shown in Fig. 12 leads to the following expression for the

angle of departure ¢
¢ = 91 + 62 . (4.6)

If 91 and 92 are expressed in terms of ¢ and w, the following

expression is obtained for ¢ which is valid for all { > O

4.7)

By writing Eq. (4.7) as 52 = (gl - 1) tan ¢, it is apparent that lines
of constant ¢ are merely straight lines passing through the point

T
g = (1,0) with a slope of tan ¢, which implies that the angle between
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a line of constant ¢ and the 51 axis is merely ¢. In Fig. 13b

lines of constant ¢ in the g plane are shown.

3. 8Size of the Dominant Periodic Solution

It was determined by analog simulation that the dominant periodic
solution for the plant under consideration is as shown in Fig. 31, in
Appendix A. It is shown that for this periodic solution to exist with
linear switching the quarter-period + must satisfy Eq. (A6) which
becomes

tan e1

7 = ———gl —3 , €, > 1 (4.8)

when 51 is substituted for pl and P is set equal to unity. As
indicated by Fig. 31 the size of the periodic solution is constant for
constant + which is equivalent to constant 61’ provided that 51 > 1.
Several lines of constant dominant periodic solution size are plotted in
Fig. 13c and the corresponding amplitude of the error variable eq is
given.

It is interesting to note that the two different methods for infer-
ring stability-in-the-large, namely, requiring that |¢| > 90o and that
no periodic solution exist, both yield the same requirement which is

that 51 < 1.

C. DESIGN OF THE OPTIMAL LINEAR SWITCHING FUNCTION FOR THE THIRD-ORDER

EXAMPLE

Having accumulated the above qualitative information, it is a rela-
tively simple matter to reduce the likely candidates for the optimal
linear switching-function parameters to a relatively small area in the
two~dimensional parameter space. From examination of Fig. 13a, it
appears reasonable that the parameters should lie somewhere near the
line corresponding to € = 1, where the fastest rate of decay in chatter
is obtained for a given value of il' Figure 13b indicates that gz
must be raised as 51 is increased in order to keep ¢ from becoming

so low that stability becomes a problem, e.g., ¢ < 600. Figure 13c
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shows that as 51 is increased past 51 = 1 the size of the periodic
solution, and presumably of the stability region, decreases quite rapidly,
independent of €2' This implies that, as il and £, are increased
in an effort to increase the rate of decay in chatter and keep ¢ from
being too low, there is some value beyond which 51 may not be raised,
regardless of any changes in gz.

Should the designer want to choose an initial set of parameters in
order to search the performance surface for the optimal linear switch-
ing function (for the particular cost function used) a reasonable start-

T
ing point would be £ = (1,2). Here ¢ = 900, Ie = oo, and o

3,m
takes on its largest value for that particular value of &1' That this
is a reasonable choice is shown in Fig. 14 where contours of the actual
performance surface defined by Eq. (4.2) are given. It is seen that the
suggested initial choice of g, labeled Pl’ is quite close to the
optimal value of é and represents a cost of J = 1.353 versus J = 1.20
for the best linear switching function.

To verify that this choice is feasible, the gradient search process
described in Appendix B was used to find the optimal linear switching
parameters. However, for the purposes of illustration, the search was
initiated from five points (denoted P

..,P. in Fig. 14) relatively

2’P3" 6
far from the region found by using the qualitative design procedure.

From points Pz, P3, and P4 the cost was reduced to below 1,25 within
six iterations of the search procedure. However, the searches initiated
from points P5 and P6 both found the relative minima in the region
near gT = (0,8, 1.3). While the presence of these relative minima may
appear to be detrimental to the design procedure, they do not pose a
serious problem for three reasons. First, three of the searches found
the absolute minimum. Second, the searches were started much further
from the absolute minimum than they would have been if the proposed
qualitative design information had been used in guiding their selection.
Third, on the basis of the second-order results presented in Section II-C,
it seems likely that the relative minima would be reduced in size and
possibly disappear if more initial conditions were used in the definition

of the cost function.
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D. DESIGN OF A PWL SWITCHING FUNCTION FOR THE THIRD-ORDER EXAMPLE

The sub-class of PWL switching functions to be considered is given
by Eq. (2.1) and it remains to be decided which of the components
ci(ei) should be made PWL functions. Because the plant has undamped
oscillatory poles it is anticipated that the three—component row vector
5¢/3£ will provide a basis for this decision, as explained in Section
I11-C.

By using Eq. (3.6), this vector is readily found to be

o0 1
= (-¢_, £.-1, £) (4.9)
dp ¢, - 12, g; 2’ 31 2

where the necessary reliationships between g , p, and ¢ are given by
Eqs. (4.4) and (4.7). Letting 5¢/Bpi = Ci’ where the Ci are constants,
equations for the lines of constant B¢/Bpi in the £ plane can be
obtained.

For example, when i = 1, the first component of Eq. (4.9) gives

2 2 E2
(gl- 17 + gz + ¢ = 0.
1
Completing the square yields
2 2
2 1 1

which is the equation of a family of circles with radii 1/2IC1| cen-
tered at the points gT = (1, - 1/201). Similarly, curves of constant

02 are given by
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Because 5¢/5p3 = = 5¢/5p1, the curves of constant C, are identical
to those for - Cl' Lines in the g plane for representative values
of 5¢/5pi are plotted in Fig. 15.

Comparing the lines of constant 5¢/8pi in Fig. 15 with the con-
tours of constant cost in Fig. 14, it is apparent that in the region
of the g plane where J attains its minimum value |5¢/Bp2| is con-
siderably smaller than |5¢/Bp1| and fé@/apsl. Also, since the initial
conditions being considered are along the e axis and the e and

1 2

3 coordinates form an oscillatory pair, the ey component of the

error vector will vary over a considerably greater range than the other

€

two components. One further consideration is the fact that the switch-
ing points of the dominant periodic solution depend upon Py and P3»
but not Py @s shown in Appendix A.

For these reasons, the switching function was made PWL by adding

one breakpoint to the ¢ component, yielding the parameter array

1
P11 Pi2 P13
(py= g P2 * %
1 b:4 X

where the x's denote undefined elements.

The breakpoint was fixed at = 1.0 and the gradient search

P12

procedure used to optimize the three slopes and p21, yield-

P11’ P13
ing a minimum value of J = 1.04 when the gradient search was initiated
close to the optimal linear switching parameters where J 1is evaluated
over eight initial conditions, as before. For the reasons given in
Section II-D, the random perturbation search procedure was substituted
for the gradient method and used to find the minimum cost corresponding
to three values of the breakpoint, namely p12 = 0.5, 1.0, and 2.0.

For these breakpoints the minimum values of J found were 1.10, 1.04,
and 1,17 ,respectively. With p12 = 2.0 the PWL switching function

yielded very little improvement in cost over that obtained with linear

switching, presumably because the breakpoint was located so far out
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along the e axis that it was unable to affect the response from more
than a portion of those initial conditions used. However, this occur-
rence would seem to be a property of the particular plant and initial
conditions chosen and should not form the basis for any overall conclu-
sions regarding the location of the breakpoints,

By measuring the performance surface in the vicinity of its minimum

versus p;, and P13 for discrete values of and with P15 = 1.0,

Po1
it was found that no relative minima existed in the region measured and

that the minimum value of J was indeed 1.04, as was determined from
the gradient and random searches.

To investigate the effects of making o and os PWL the perform-

2
ance surface was measured for several values of the breakpoint and

various values of the three slopes. It was found that making o PWL,

3

with 0 linear, afforded a minimum cost of J = 1.09, while

1

making 02

The minimum values of cost obtained for these three cases and for linear

and 02

PWL gave essentially no improvement over linear switching,

switching are shown in Table 1, along with their respective optimal

parameter values.

TABLE 1. OPTIMAL SWITCHING FUNCTIONS FOR THE l/s(sz+ 1) PLANT

No.| Type I Pr1 | P12 |P13 |Pa1 |Pa2 |P23 [P31 |P3a | P33
1| o PWL|1.04 | 2.40[1.00 |1.10}2.30 | x x |1.00]| x x
2| o, WL |1.19 | 1.50 | x x [1.70 |1.00 {1.90 [1.00 | x X
3| op PWL [1.09 | 1.95 | x x |2.30 | x x |1.00|0.50|2.45
4 |Lin.Sw. |1.20 [ 1.50| x x |1.90 | x x |1.00| x x

Note: x denotes an element of {p] not defined for that particular
switching function.

It is interesting to note that the optimal values of p11 and

p21 when 01

ing function with Py = 2.40 and p2 = 2.30. Examination of Fig. 14

is PWL (row 1 in Table 1) correspond to a linear switch-

shows that this point (denoted P7) lies on the stability boundary of
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the linear switching parameter space, implying that if o, Wwere not

PWL at least one of the eight trajectories used in measuring J would
be unstable.

In Fig. 16 the system transient responses obtained with those opti-
mal PWL and linear switching functions whose parameters are given by
rows 1 and 4 of Table 1 are shown for the eight initial conditions used
in defining J. The optimal times for the state to reach the origin are
indicated in Fig. 16a and it can be seen that, with the exception of
the initial condition eO = 6, the error was reduced to below 0.05 be-
fore the optimal time had elapsed. The region S cannot be depicted
on Fig. 16; however, lel must be < 0.1 for the state to be within
S. The exact value of e will depend upon the slope and curvature
(e and €) of the transient response. A comparison of the two figures
indicates that the only essential difference between the two switching
functions is in the small-disturbance response. With the linear swiich-
ing function the error approaches zero at a somewhat slower rate than it
does with the PWL switching function. This is to be expected because,
from the root-locus point of view discussed in Chapter III, the zeros
corresponding to the linear switching function must be located further
to the right in the s-plane than those corresponding to the linear por-
tion of the PWL switching function in order to insure stability for
large states. For all initial conditions in the range 1 < e0 < 8, the
maximum overshoot was 0.02 for the PWL switching function and 0.04 for

the linear switching function.

E. STABILITY CONSIDERATIONS FOR THE THIRD-ORDER EXAMPLE

Having found that by making Oi

can be obtained, one might ask what is to be gained by making one or

PWL a minimum cost of J = 1.04

more of the other components of ¢ be PAL. Since J = 1.00 when each
of the K trajectories is optimal, it is apparent that the cost of

J = 1.04 cannot be reduced much further, regardless of what switching
function is used. However, when ¢

1
A
is adjusted to attain this value of cost, it can be shown that {p} ,

is the only PWL function and {p}

the optimal value of {p} , is extremely close to the region in the
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parameter space corresponding to one or more unstable trajectories among
those used to define J.

Figure 17 shows the stability boundary in the plane for

P11’ P13

p12 = 1.0 and pz1 = 2.30, as obtained by simulating the system on the

analog computer in the repetitive mode. The region to the left of the

stability boundary corresponds to PWL switching functions for which all

o
1 1
and the region to the right corresponds to switching functions yielding

initial conditions along the e axis between O <e, < 8 are stable

an unstable trajectory from at least one initial condition in this range.
The point in the parameter space corresponding to {3} is indicated in
Fig. 17 and it can be seen that it lies relatively close to the stability
boundary. The situation shown is undesirable in a practical control
system because relatively small fluctuations in the controller or plant
parameters could result in unstable trajectoriesg,

In addition to the stability boundary in the parameter space it is
of substantial engineering interest to consider the stability boundary
in the state-space. When the PWL switching function is described by
{6], the stability boundary in the first quadrant of the e e2 plane
is as shown in Fig. 18. 1In other words, any initial condition for which

o <8, eo > 1 , and eo = 0 will be unstable. This situation also

1 2 3
poses severe drawbacks from an engineering point of view because of the

0 <e

disastrous consequences of initial conditions for which € and e are
not very small,

It was mentioned in Section III-B that during numerous analog simu-
lations the existence of the dominant periodic solution shown in Fig. 31
has been observed to play a vital role in the stability of the system.

As shown in Appendix A, a condition necessary for the existence of this
periodic solution is that the switching surface, i.e., all points where
0 = 0, intersect the locus of possible switching points shown in Fig. 33.
Since this locus lies entirely in the el, e3 plane, only the inter-
section of the switching surface with this plane need be considered. If

oi and o0 are both PWL with one breakpoint apiece, as shown in Fig. 19,

3

the intersection of the switching surface with the e e3 plane will be

1’
as shown in Fig. 20.
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Now it is an easy matter to evaluate the effect upon the dominant
periodic solution of making 0o be PWL when o, 1is fixed so as to

yield the minimum cost, i.e., = 2.40, p12 = 1,00, and p13 = 1.10

P11
(see row 1 of Table 1), When o is linear, with Pgp = 1.00, the

intersection of the switching surface with the e e3 plane is the

1!
line marked p32 = o in Fig. 21. It is apparent from the intersection

of this line and the locus of possible periodic-solution switching points

at the points N1 and N2 in Fig. 21 that the condition on the switch-

ing points necessary for the existence of the periodic solution has been

satisfied.™ Therefore, when only oi

periodic solution exists exactly as if the switching function were

is PWL with p12 = 1.00, the

linear. This situation accounts for the small margin of stability both

in the parameter space for initial conditions along the e1 axis and

in the state-space for initial conditions not along the el axis,

If is made PWL with p32 = 2.00 and p33 = 2,00, the inter-

%
section of the switching surface with the el,e3 plane becomes the

line in Fig. 21 denoted by p32 = 2.00. It can be seen that the switch-
ing surface intersection line and the locus of possible switching points
become tangent to one another but, with the trivial exception of the

origin, do not intersect. That = 2,00 marks the transition between

P32
two distinct types of behavior can be seen by examination of the line
marked p32 = 1,00. Here, the switching surface has no non-trivial
intersection with the locus of possible dominant periodic solution
switching points. Furthermore, the maximum value attained by |e3|
in any of the trajectories defining the cost function is 1.00, so the

addition of the breakpoint and increase of slope at = 1.00 will

P32
have no effect upon the minimum cost obtainable for the initial condi-

tions comprising J. Also, as long as /p33 < 1 the slope of the

P13
1 e3 plane will be greater

than =~1 (see Fig. 20) and there can be no intersection of the

switching surface intersection in the e

*
The sufficiency of this condition has been verified by analog
simulation.
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switching surface and the locus of possible periodic solution switching
points for values of |e1| larger than those shown in Fig. 21.

The effect upon the stability region in the parameter space of
making 03 PWL with p33 = 2,00 and with various values of the break~

point can be seen in Fig, 22, The minimum cost was I = 1,04 for

P
P32 > l.gg. Also, it was observed that the point of minimum cost in the
pll’ p13 plane, denoted {6} , remained essentially unchanged when

oé was made PWL. The effect upon the stability region in the state-
space of making O3 PWL with P3o = 1.00 and P33 = 2.00 was evaluated
on the analog computer. It was found that the system was asymptotically
stable for all initial conditions in the region Hg“ < 100. It was not
possible to attain larger initial states due to scaling limitations,

but it was observed that the character of the response was essentially
independent of the size or location of the initial state, as long as it
was large, i.e., Hg” > 10.

Therefore, if the switching function described by the array

2,40 1.00 1,10
P} = 2.30 x X (4.10)
1.00 1.00 2,00

is used, the resulting system, which is shown in block-diagram form in
Fig, 23, will have a cost of four percent above optimal for the cost
function defined by Eq. (4.2), step~function responses as shown in Fig.
l6a, and will be asymptotically stable at least in the region “g” < 100,

From a performance surface searching point of view, the region of
stability in the state-space could also be enlarged by using a wider
variety of initial conditions to define the performance surface which,
in turn, will result in a new value of {6} . If the initial conditions
chosen were not typical of the operation of the system with respect to
e, and ez, then others could have been added. The choice of the
switching function components to be made PWL and of the initial values
for the PWL parameters to be searched would be carried out as in the
previous example.

~64=




\ 0.5 )
20 0 Pa* 100
p.s® £y = 230
a Fiy™ 200
"
o2
UNSTABLE
2k
STABLE
{p}y~*
0 1
0 2 p" 4 6

FIG., 22, STABILITY REGIONS IN THE P11’ P13 PLANE FOR VARIOUS VALUES OF

p32 WITH BOTH Oi AND O3 PIECEWISE-LINEAR AND INITIAL STATES

ALONG THE ey AXIS, THIRD~ORDER EXAMPLE

(
o +1
u 3 G { i e,=e(t)
O ¢ ¢ § 5
20
0 fe—
- |
%! 2.30
ki
2.40
o (

FIG. 23. BLOCK-DIAGRAM OF THE 1/s(s2?+ 1) PLANT WITH THE PIECEWISE-LINEAR
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F. QUALITATIVE DESIGN OF LINEAR AND PWL SWITCHING FUNCTIONS FOR A
THIRD-ORDER PLANT WITH DAMPED ROOTS

To show that plants having well-damped roots present no difficulties
for the qualitative design procedures given, sub-optimal linear and PWL
switching functions are found for the 1/(s + 0.5)(52+ 0.8 s + 1) plant,
It is concluded that, when the plant roots are well-damped and the
cost-free region is of moderate size (say ”§” < 0.20 for this plant,*
if |u| = 1) 1linear switching can provide close-~-to-optimal response
and making the switching function PWL cannot provide any significant
improvements in the cost or the region of stability. Likewise, the
response times are considerably less sensitive to the switching function
parameters than when the plant poles are undamped. Only if the cost-
free region is quite small (say H§” < 0.02 for this plant) is the use
of PWL switching warranted.

By applying the qualitative design criteria stated in Section B
four trial linear switching functions were selected and the trajectories
from four widely spaced initial conditions were simulated on the analog
computer. The response times obtained with the switching function
yielding the lowest total response time, i.e.,

ET = (1,2,1) , (4.11)

are shown in Table 2 with the corresponding initial conditions and
optimal times. The transient responses are given in Fig. 24a.
Kashiwagi [Ref. 20] has found that the quasi-optimal switching function

of FllUgge-Lotz and Titus [Ref. 6] reduced initial condition No. 1 to

*
The canonical variable x 1is as defined by Flligge-Lotz and Titus
[Ref. 6]. For this plant, one obtains

1.000 0.800 1.000
X = 0.500 1.200. 0.400 e
0 0.458 0.916 /
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”§” < 0.20 in 12.01 sec., versus 8.20 sec. for the linear switching

function given above.

TABLE 2, LARGE-DISTURBANCE RESPONSE TIMES FOR THE 1/(S+0.5)(52+ 0.8s+1)
PLANT WITH LINEAR SWITCHING GIVEN BY EQ. (4.11)

Initial Condition Response Time (sec.)
No. eo e Eo Optimal Linear Switching
1 -27.7 5.5 23.2 7.10 8.20
2 15.6 9.6 -4.,0 6.12 7.05
3 0.9 1.6 -9.1 5,82 6.35
4 -14,9 6.4 7.5 5.96 7.10

Note: The optimal response time is to the origin; the sub=-optimal
times are to ”g“ < 0.20.

Efforts to improve upon the results given in Table 2 by making the
switching function PWL and using the qualitative criteria given in
Section III-C to select several sets of parameter values proved unsuc-
cessful because the breakpoints of the PWL Oi were close to or within
the cost-free region, implying that the PWL switching function was es-
sentially linear. To show the utility of PWL switching when the cost-
free region is small, a switching function was designed using a set of
four initial conditions having ”59” ~ 2.0 and a cost-free region de~-
fined by ”§“ < 0.02. This switching function, described by the para~

meter array

(s.oo 0.05 2,00
pl= 3.00 X X , (4.12)
1\1.00 X x

yields the response times given in Table 3 and the transient responses

shown in Fig, 25b for the four small initial conditions.
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TABLE 3, SMALL~DISTURBANCE RESPONSE TIMES FOR THE 1/(s+0.5)(52+ 0.8s+1)
PLANT WITH PWL SWITCHING GIVEN BY EQ. (4.12)
AND LINEAR SWITCHING GIVEN BY EQ. (4.11)

Initial Condition Response Time (sec.)

No. e® &° e° Optimal PWL Sw. Lin. Sw.
5 0.11 -0.57 1.56 1.40 2.0 2.3
6 -0,26 -0.39 1.81 1.95 3.7 4,0
7 -0.99 0.74 0.79 1.99 3.7 4.8
8 -1.16 1.66 | -0.85 |, 1.77 3.6 5.0

Note: The optimal response time is to the origin; the sub-optimal
times are to ”§“ < 0.02,

In order to substantiate further the conclusions stated at the
beginning of this section, the PWL switching function (4.12) was used
to control the large initial conditions (1,2,3, and 4), yielding the
transient responses shown in Fig. 24b. Because the breakpoint is so
small (p12 = 0,05) the PWLTswitching function is essentially a linear
switching function with p = (2, 3, 1) for all but small states. Since
these effective linear switching coefficients are similar to those given
by Eq, (4.11) it is not surprising that the transient response of Figs.
24a and b are similar, Finally, the small=-disturbance responses of the
linear switching function are given in Fig. 25a and the response times
in Table 3.

It is readily apparent that the design based on large initial condi-
tions and a relatively large cost-free region has resulted in small
transients which decay very slowly. If the performance corresponding
to either switching function is not sufficiently close to the optimal,
the parameter values given can be used to initiate an optimization

procedure,
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V. FOURTH-ORDER EXAMPLE

A. PROBLEM STATEMENT

The switching surfaces designed for a third-order control system in
the previous chapter illustrated the use of the design guides and sur-
face searching procedures and raised many of the problems to be encoun-
tered in their application. Since one of the main reasons for applying
the root-locus method and considering the dominant periodic solution is
to reduce the complications involved in control design for higher-order
systems, it is of interest to show that these design methods are appli-
cable to a fourth~order (and presumably higher—-order) plant with rela-
tively little additional complexity.

Also, it will indeed become apparent that the design of an optimal
PWL switching function by surface searching methods becomes more com-
plicated as the order of the system increases, due mainly to the in-
creased dimensionality of the performance surface to be searched. It
will be shown, however, that the qualitative design methods are extremely
helpful in finding a simple sub-optimal PWL switching function which
yields good performance over a wide range of initial conditions which
could serve either as a final design or as the initial point of a para-
meter optimization.

The plant with transfer function 1/sz(sz+ 1) will be considered
in the same manner as in the previous chapter and it will be found that
much of the design process will be an extension of work already done for
the third-order example. As mentioned in the previous chapter, the
results extend immediately to fourth-order systems with roots in the LHP,.

The plant and contactor are described by the differential equation

0 1 0 0 0
_ o o 1 o 0
e = e + u (5.1)
o 0 0 1 0
o 0 -1 0 1
T o e ees
where e = (e,e,e,e ) and Iul =1.
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The cost function given by Eq. (4.2) will be used, with the initial

o
states now being of the form (e’) = (e§,0,0,0), where eg

The optimal response times corresponding to the initial conditions used

=1,2,...,8.

to define J are obtained as in the third-order example of Chapter 1V,
i.e., by using the simple geometry of the trajectories in the canonical

space and the uniqueness of the optimal control, and are given below.

e° 1 2 3 4 5 6 7 8 16 32

To(sec.) 4,28 {5,055 [5.56 |5.97 |[6.30 {6,60 {6,87 |7.12 [8.73 |11.38

The cost-free region S 1is defined by the inequalities

le, + e,] < 0.10 )

1
‘ Iel - e2| < 0.10
S = s
) leg + 0.5 e,| <0.10 [

74N

\_leg = 0.5 ¢,]

0.10-)

To simplify the visualization of the trajectories, the canonical

transformation
1 0 1 o0 1 0 =1 ©
0O 1 o0 1 0O 1 0 =1
X = e 5 &= )
0O 0 1 O© o 0 1 0 (5.2a)
0 0 0 1/ O 0 O 1 (5.2b)

which will transform Eq. (5.1) into

0 1 0 0 0

. 0 0 0 0 1

X = X+ u,
0 0 0 1 0
0 0 -1 0 1

-72-




is defined. Since the state-space is four-dimensional, the trajectories
will be represented by their projections on the xl, xz plane which are
parabolas and on the Xzs X, plane which are arcs of circles centered
at the points X3 =+ u, X, = 0.

The linear switching function, expressed in the error variables, is

a(e) = p1e) + pyey * P33 * €

where Py has been set equal to unity. The three-dimensional linear
switching-function parameter space is described by the vector g whose
components are given by Eq. (3.5) with n = 4, i.e.,

el = P, 2w, o. (5.3)

By equating like powers of s in Eq. (3.4), the linear switching cqef-

ficient vector p can be expressed in terms of the components of g as

BT = (glg:i’ el + €2€3: &2 + €3, 1). (5.4)

While p is easily found knowing g, the converse requires the solution
of two cubic equations whose roots are not even unique when £ > 1. For
this reason, and the fact that most of the relationships to be found are
conveniently expressed in terms of its components, g wiyl be used
throughout most of the analysis, rather than p. When n {3 and the
state variables are e and its derivatives, £ and the first (n-1)
components of p are identical.

A single relationship is established between the components of g
when one of the qualitative design guides is held constant, thereby
defining a surface in the three-dimensional £ space upon which that
particular design guide is constant. For this example lines of constant
value for the qualitative design guides will be plotted versus gl and
52 for several fixed values of 53 . For a fifth-order plant several
values could be assumed for the damping ratios of the two pairs of
switching function zeros, yielding a two-dimensional plane in which the

qualitative design guides could be plotted.
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The requirement that the switching function zeros lie in the LHP can
be found by applying the Routh-Hurwitz criterion and is that PoPs > 1,
in addition to the obvious requirement that the p.j >0, j=1,2,3., 1In
terms of the £ space, the requirement is simply that the &i > 0,
i=1,2,3.

B. LINEAR SWITCHING DESIGN GUIDES FOR THE FOURTH-ORDER EXAMPLE

The design guides to be used in applying the three linear switching

design criteria stated in Section IV-B are evaluated in terms of g

“Im[s]

L.

Re[s]

FIG. 26. TYPICAL ROOT-LOCUS PLOT FOR THE FOURTH-ORDER EXAMPLE
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1. Maximum Real Part of the Zeros

When O <:Cg 1, examination of the root-locus plot in Fig. 26 re-
veals that the maximum real part of the zeros (denoted by - Qh) is

given by
¢ = min [a, € w] 0< <.

If £ > 1, the maximum real part of the two zeros described by £ and

W 1is as shown in Fig. 12b and
. 2
a = min [q, w(€ - NE-1] 1< €.
By using Eq. (5.3) to express the two equations above in terms of g s
the following set of relationships defining a surface of constant an

in the g space can be derived in a manner analogous to that of Section
IV-B-1:

. 2
W) £ >0, 2o 66/ v, £3=2a

(i) € > af, , Ey=20a, €3> 0 (5.5)

- m

(111) €, > O‘f.’ 2= &1/0 + Oy B3> O -

Each of the above relationships describes a portion of a plane and the
three planes intersect at the point gT = (ai, 2ah, ah) which corresponds
to C =1 and = w and implies that in the s-plane all three zeros

are superimposed at the point s = = Qﬁ' It should be noted that if

53 is disregarded in Eq. (5.5 ), relationships (ii) and (iii) reduce

to Eq. (4.5) which was obtained for the third-order example.

2. Angle of Departure of the Root Locus from the Complex Poles

The use of the definition of the 180° root loci and the geometrical
relationships of Fig. 26 leads to the following expression for the

angle of departure ¢:
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1
¢ = 91 + 92 + arc tan <—OC— >- 90 , (5.6)

Since 91 and 92 of Eq. (5.6) are exactly the same angles as 91
and 92 of Eq. (4.6) in Section IV-B-2, and il and gz are identical
in the two cases, it follows that the expression given in Eq. (4.7) is

valid here, namely,

By substituting the preceding equation into Eq. (5.6) and replacing «
with g3, ¢ is given by

¢ = arc tan <}§E—%> + arc tan <}l—->— 90 . (5.7)
Gt €3

The equation for the surfaces of constant ¢ in the g space 1is

1 - €3 tan (¢ + 90)
E_‘z = - (gl bl 1). (5.8)

53 + tan (¢ + 90)

Equation {5.8) can be considered as representing a straight line parallel
to the &l, gz plane which intersects the line ¢, = 1, &2 = 0 and

has a slope which is dependent upon both ¢ and 53 . According to

Eq. (5.8), the surface upon which ¢ = 90° is expressed by

1
€, = - E;— (¢, - . (5.9

It should be noted that when &3 = 0 Eq. (5.7) reduces to Eq. (4.7),
implying that the intersections of the surfaces of constant ¢ with

the 51’ &2 plane must be identical with the lines of constant ¢ in
Fig. 13b, which were obtained for the third-order example. As 53 - 00
the lines of constant ¢ parallel to the gl, ﬁz plane rotate counter-

clockwise through 900.
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3. Size of the Dominant Periodic Solution

The results of analog simulations indicate that for the plant under
consideration the dominant periodic solution is as shown in Fig. 32, in
Appendix A. A condition which the linear switching function must satisfy
in order for this periodic solution to exist is derived and the result
is expressed in terms of Po and Py by Eq. (A6). 1If Py is set
equal to unity and Py is expressed in terms of £ by using Eq. (5.4),
then Eq. (A6) can be rearranged to yield

€2

_o_ 1 _ tan y e
T ks <§1 tany - ¢> » 0KV (5.10)

Equation (5.10) states that the size of the dominant periodic solution
is constant in the § space along lines parallel to the gl, 52 plane
which intersect the line gl = tan ¥/(tan § - V), gz = 0 and have a
slope of -1/g3 . When = n/2 the size of the dominant periodic
solution is infinite and Eq. (5.10) reduces to Eq. (5.9), which is the
equation for the surface in the ¢ space along which ¢ = 90°. For
0 < ¥y < /2, the surfaces of constant periodic solution size are just
the surface for V = n/2 shifted out along the &, axis by the amount
y/(tan y - §).

As in the third-order example, both the nonlinear and the equivalent

linear systems give the same boundary in the parameter space for which

stability~in-the-large can be inferred.

C. DESIGN OF THE OPTIMAL LINEAR SWITCHING FUNCTION FOR THE FOURTH-

ORDER EXAMPLE

The optimal linear switching function for the plant under consider-
ation and the assumed cost function is found by searching the resultant
performance surface to find those values of P17 Po and P which yield
the minimum cost. The qualitative design information obtained in the
previous section is used to choose several starting points for the
random perturbation search process which should lie reasonably close to

the optimal parameter values.
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The lines of constant value corresponding to aﬁ = 0,50 and 0.707,*
o = 70° and 900, and ]e4|m = 4.0 and o are shown in Fig. 27 for
gs =1/2, 1/Jé, and 1. By using this information to apply the three
gqualitative linear switching-function design criteria, it can be seen
that the region of interest in the three-dimensional £ space is most
likely within a portion of that shown in Fig. 27. If gs < 0.5 the
maximum value of Qﬁ will decrease accordingly, since Oﬁ g 53, and the
small disturbance response of the system in chatter will have a longer
time constant than if g3 > 0.5, Examination of Fig. 27c reveals that
when §3 > 1,0 stability becomes a problem unless o < 0.5 Dbecause
the lines of constant ¢ and constant |e4|m rotate counterclockwise
as gs is increased, However, the choice of e < 0.5 1is detrimental

to the small-disturbance response, just as when is made small.

€3
47 and P6 in Fig. 27 were selected as
starting points for the search of the performance surface corresponding

The puints denoted Pl’ PS’ P

to linear switching, All fcur points satisfy the inequalities Qﬁ 2 0.5
and ¢ > 70° and ley,] = 4.0 in each case. While the choice of these
values ig somewhat arbitrary, they appear to represent the best compro-
mise between large= and small-disturbance response which can be made with
this plant, By the same token, the points denoted P2 and P5 in

Fig. 27b do not satisfy all three of the above criteria and should,
according to the design procedure, yield higher values of cost than the

other points selected. In Table 4 the components of £ and g and

the values of J corresponding to these six points are tabulated,

*There is no line for ¢« = 0.707 in Fig. 27a where €3 = 0.5 be-
cause Eq. (5.5) requires that oy < §3 in order for the plane of con-
stant E4 to intersect the surface of constant minimum real part of
the zeros.
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TABLE 4., VALUES OF £, p AND J FOR POINTS IN FIG. 27

LABLED P, i =1,...,6

1 31 P €3 P1 Po P3 Py J
1 || o.82 | 1.50 | 0.50 | 0.41 | 1.57 | 2.00 | 1.00 | 2.20
2. || 0.87 | 0.50 | 0.707 || 0.62 | 1.22 | 1.21 | 1.00 | 2.35
3 || 0.75 | 1.00 | 0.707 | 0.53 | 1.46 | 1.71 | 1.00 | 1.45
4 | 063 | 1.50 | 0.707 |l 0.45 | 1.69 | 2.21 | 1.00 | 2.30
5 | 0.50 | 2.00 | 0.707 || 0.35 | 1.91 | 2.71 | 1.00 || 3.30
6 | 0.50 | 1.00 | 1.00 || 0.50 | 1.50 | 2.00 | 1.00 || 2.20

Examination of Table 4 indicates that, of the four points selected
on the basis of the qualitative design procedure (Pl, P3, P4,and P6),
all gave finite values for J, i.e., the response was stable for all
eight initial conditions used, and one (P3) yielded a value of cost only
45 percent above the optimal. In addition, of the two points selected
as being less satisfactory than these four, one (P2) yielded a value
of J comparable to that obtained with three of them and the other
(P5) yielded a significantly higher cost. Furthermore, several values
of £ which were chosen randomly rather than on the basis of the quali-
tative design criteria either yielded high values of cost (say J > 3.0)
or resulted in one or more unstable trajectories.

The optimal linear switching function was obtained by starting the
three-parameter random search procedure described in Section II-D at
those points in the p space corresponding to points P3, P4, and P6*

in the £ space. Of two searches initiated from points P3 and P4 R

one found the absolute minimum and one found a relative minimum. A

single search started at point P succeeded in reaching the absolute

6
minimum which was at the point AT = (0.72, 1.83, 1.86, 1.00)** and

*
Because of the proximity in the p space of points P and P

b

only P6 was used as a starting point for the search proceéure. 6
*x A . T .

The value of ¢ 1is given by = (1.02, 1.15, 0.71), for which

o = 0.56, = 54°, and ley| = 2

~J o>
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corresponded to a minimum cost of I = 1.19. The fact that é was the
optimal linear switching function for the specific cost function used
was verified by restarting the search procedure at é several times
with a relatively large value for the standard deviation of the random
parameter perturbations, without improving upon the cost. The step-
function responses obtained with the optimal linear switching function
are not shown, but they are very similar to those of Fig. 29 which were
obtained with PWL switching. Because the corresponding values of cost
differ by only 0.07, this similarity is not surprising.

Although the step-function response of the optimal linear switching
function is reasonably close to the optimal for |e°| < 8, the region
of stability is very limited, i.e., ]eol > 9 1is unstable. Therefore,
in order to increase the region of stability and to possibly lower the

yer

minimum cost attainable, the use of W

r-‘
Uy
%
=t
ot
[¢]
=t
i
[=
0,4}
%
i
[
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D. DESIGN OF A PWL SWITCHING FUNCTION FOR THE FOURTH-ORDER EXAMPLE

The value of the four-component vector a¢/59 in the E space is
used in conjunction with the maximum magnitude attained by the four
state-variables ey during the optimal linear switching responses in
order to select the switching function component(s) to be made PWL. The
el, ez, e3, and e4 were observed to be
8.0, 3.0, 1.5, and 2.4, respectively. These values are used in guiding

maximum magnitudes attained by

the selection of the breakpoint(s). The vector B¢/59 is evaluated by
the straightforward application of Eq. (3.12) to the expression for
¢(§) given by Eq. (5.7). After a considerable amount of algebra it is
found that

(.- 1) + £t
d¢ 1 253
= - , (5.11a)
2 @+, - 0¥ v e

p,
§3 (El - 1) - gz
a+ed [(gl- 2, gj] e
J

(o%4
©

(5.11b)

#
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Q/
<
Q/
©

5 = = 5 3 (5.110)
P3 P
d¢ d¢

and =S = T oo . (5.11d)
Pq Po

The intersections of the surfaces of constant B¢/BQ with the plane
£y = 1A/2 are shown in Fig. 28.

Since e1 varies over a substantially wider range than do the other
components of e, it is natural to consider making Gl PWL. If a single
breakpoint is used initially, the parameter array {p} has five un-~

determined components and appears as

(P11 P12 P1£\
p21 X X
- (5.12)
(e} b e
1 X x_/

where the x's denote elements which are undefined for this particular
choice of switching function. Examination of Eq. (5.11la) shows that
1
4

a¢/5p1 = 0 along the surface defined by €y = =
according to Eq. (5.9), is the same surface along wgich ¢ = 900. There-

(gl - 1) which,
fore, if any improvement in the large disturbance response is to bhe
obtained by making Oi be PWL, it is necessary that the value of ¢
corresponding to the linear portion of the switching function be some-
what less than 90°. Furthermore, since a¢/8pl <0 when ¢ <( 90°,

the equivalent slope of @ must be decreased beyond the breakpoint in

1
order to raise the effective value of ¢ , i.e., P13 < Py1-

The search of the performance surface corresponding to the array
(5.12) was carried out on the hybrid computer by fixing the breakpoint

and the corresponding change of slope (p13 - ) and optimizing

P12 P11
the three linear switching parameters pll’ p21, and p31 with the
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a. 3¢/dp; =Cy = - I/ Ips

b. 0¢/dp, =Cy=-9d¢/dp,

FIG. 28. LINES OF CONSTANT O¢/dp IN THE PLANE €, = 142,
FOURTH-ORDER EXAMPLE
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random search procedure. Initially P11 Poy and P3; Were set at the
values yielding the optimal linear switching function and the PWL para-

meters were chosen to be = 6.0 and (p13 - pll) = = 0.25 4in order

P12
to make the departure from the optimal linear switching function small.
After the three linear switching parameters were optimized for several

values of (p13 ) the breakpoint was lowered and the process re-

- P
peated, but with thillinear switching parameters starting from their
current optimum values using the PWL switching function. In this manner,
minimum costs of J = 1.17, 1.12, 1.13, and 1.18 were obtained with

plz = 6.0, 5.0, 4.0, and 3.0, respectively.* The optimal parameter
values yielding J = 1.12 were given by the array

0.98  5.00 0.48

2.18 X X

{p} = > (5.13)
2.00 X X
1.00 X b.¢ W,

where the x's denote undefined elements, and the corresponding step-

function responses are shown in Fig. 29.

An examination of trajectories with non-zero values for ez, eg,
and eZ reveals that, as with the optimal linear switching function,
the region of stability in the state-space is severely limited. For
example, when eg = eZ = 0, the maximum value of eg for which the
response is stable diminishes from 1.60 when ei = 0 to only 0.45 when
e; = 10. In Appendix A it is shown that the form of the equation for

the locus of possible switching points for the dominant periodic solution

is identical to that for the l/s(sz + 1) plant, but with the e2 and
4 coordinates substituted for the e and e coordinates, res-

pectively, and with e, = e3 = 0. The switching surface corresponding

e

%
The minimum value of J attainable with linear switching was
I =1.19.
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to the array (5.13) intersects the ez, e4 plane along the line

e4 = —2.18e2 and the necessary condition for the existence of the

dominant periodic solution is satisfied. To make it impossible for
this periodic solution to exist 04 was made PWL with a breakpoint at

p42 = 1.7 and with p43 = 2.40, yielding an intersection of the switch-

ing surface and the e4 plane which no longer intersects the locus

ey
of possible periodic solution switching points, thereby making it im-
possible for the dominant periodic solution to exist. Making 04 PWL
affected several of the trajectories used to measure the cost correspond-
ing to the array (5.13). Therefore, the three linear switching para-
meters were adjusted slightly, using the random search procedure, to yield

the array

0.96 5.00 0.46
2.26 X X
P} = (5.14)
2.00 b:4 X
1.00 1.70 2.40

for which J = 1.15., It was verified on the analog computer that the
origin was asymptotically stable for all initial conditions which could
be simulated, namely |[le < 100.

One of the primary reasons for using a PWL switching function as
opposed to a linear switching function is to extend the range of initial
conditions for which satisfactory performance can be achieved. To illus-
trate the usefulness of a PWL switching function when the step-function

magnitude varies over the range 1 < Ieol < 32, the switching function

parameters
0.70  8.00  0.50  16.00  0.05)
] 1.73 X X X X
p} = > (5.15)
1.65 X b.¢ X X
1.00 X X X X W,
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were obtained by observing the trajectories with the analog computer in
the repetitive mode and adjusting the parameters manually. The corre-
sponding transient responses are shown in Fig. 30 for several representa-
tive values of eo. As such, this performance represents an initial
parameter set from which an optimization could be started if the per-
formance is not adequate as given.

It has been possible to obtain an optimal PWL switching function
for a dominant fourth-order plant. However, it should be emphasized
that the task of searching a high-dimensionality surface, while pre-
senting no formal difficulty, may represent a substantial challenge to
the designer. Therefore, when the plant is truly of fifth- or higher-
order, i.e., is not adequately represented by a plant of lower-order,
it is felt that careful consideration must be given to the choice of

ihe surface searching procedure to be employed and, as previously men-
d

tioned, the methods described by Kushner [Ref. 12] and Brown [Ref. 13]
merit consideration, provided that sufficient digital computer capacity

is available.
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VI. CONCLUSION

A. SUMMARY

The problem considered in this dissertation is the possible use of
PWL switching functions for satisfying the minimum-time criterion and
for that class of control systems which can be represented by a linear,
constant parameter plant whose transfer function has only poles, a
single controller which is an ideal contactor, and an input function
which is equivalent to initial conditions on the state-variables.
Furthermore, it has been assumed that all state-variables are observable
and that no random effects exist.

In Chapter II a performance criterion is defined in terms of the
weighted response times for an unspecified number of initial conditions.
The effect of the number of initial conditions upon the resulting per-
formance surface is investigated in detail for the 1/s2 plant., It is
shown qualitatively that as more initial conditions are used in the
definition of the cost the performance surface becomes more amenable to
a surface searching process in the sense that the number and size of
relative minima are reduced, fluctuations in the surface gradient are
lessened, and the region near the absolute minimum becomes more nearly
parabolic. Also, it is shown, again for the second-order example, that
the minimum cost obtainable is relatively insensitive to the locations of
the breakpoints of the PWL function provided that the corresponding
slopes are adjusted to their optimum values. Two surface searching
methods used are presented and the results obtained with the l/s2
plant are described.

In Chapter III a qualitative method based upon root-locus techniques
and the existence of certain periodic solutions is given for designing
sub-optimal linear switching functions. It is shown how the properties
of the root loci and the periodic solution can be used to provide(
qualitative information as to which of the linear switching function
components should be made PWL functions and in what directions the
slopes should be changed. A second-order plant with unstable oscillatory
poles is used to illustrate the qualitative design procedure for both

linear and PWL switching functions,
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The design of an optimal PWL switching function for the third-order
plant 1/s(s2 + 1) subject to step-function inputs is carried out in
detail in Chapter 1V. It is shown that the results of the qualitative
design procedure are in good agreement with the measured linear switch-
ing performance surface corresponding to the assumed cost function. By
using the root-locus information to select a linear switching-function
component to be made PWL and then using the random search procedure to
optimize the parameter values, a PWL switching function having a single
breakpoint is found which yields close~to-optimal cost. By considering
the existence of the dominant periodic solution, it is shown how the
PWL switching function designed on the basis of cost alone can be modi-
fied so that the effects of parameter variations upon the system sta-
bility are substantially reduced and the region of stability in the
state-space is increased by a factor of at least one hundred. The
third-order plant 1/(s + 0.5)(52 + 0.8s5 + 1) is considered briefly to
show that there is no difficulty in applying the design methods to plants
with well-damped poles. It is found that, while linear switching gives
close-to-optimal responses for large initial conditions for such well-
damped plants, PWL switching gives close-to-optimal responses for both
large and small initial conditions. It is indicated in Chapter V that
there are no theoretical limits to the order of the plant which can be
treated by the proposed methods, and this is illustrated by designing
a PWL switching function for the plant l/sz(sz 4+ 1). However, it is
evident that the practical aspects of carrying out the performance suf-
face search do become more complex as the plant order increases.

This investigation has provided three contributions to the field of
contactor control system technology. First, it has been demonstrated
quantitatively that relatively simple PWL switching functions which, by
their very nature, are easily implemented can give very close-to-minimum-
time responses for a variety of plants and initial conditions. 1In
addition, PWL switching functions can be used to enlarge greatly the
region of stability in the state-space for those systems with linear

or PWL switching having finite stable regions.
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Second, a procedure has been given for qualitatively designing linear
switching functions for plants of arbitrary order and for determining
which switching function components should be made PWL and how the slopes
should be changed in order to improve the performance over that attainable
with linear switching.

Finally, a procedure has been presented for the synthesis of PWL
switching functions by formulating the problem as the search of a per-
formance surface and by providing methods for defining a performance
surface which will be amenable to standard searching techniques, for
initiating the search, and for reducing the dimensionality of the surface.

The principal advantages of PWL switching functions and of the pro-

posed methods are:

1. PWL switching functions of the type considered here are extreme-
ly simple to implement and are suitable for use in adaptive
systems.

2. The design procedures are not limited theoretically by the
order of the plant.

3. No a priori assumptions are made regarding the number of
switching points or the shape of the optimal switching sur-
face, so presumably PWL switching and the design methods are
applicable to a wide variety of plants and initial conditions.

4, A quantitative performance criterion is used for the design
of optimal linear and PWL switching functions.

Likewise, the following practical considerations should be pointed out:

1. If the optimization procedure is performed entirely on a digital
computer, as opposed to using a hybrid system, a considerable
amount of computation time is required, primarily for the inte=-
gration of differential equations.

2. As the order of the plant and, in turn, the dimensionality of
the performance surface increase, the task of finding the op-
timal parameter values presents an increasingly complex surface
searching problem.
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Although the usefulness of PWL switching and of the design procedures
presented must be demonstrated with specific plants, initial conditions,
and cost functions, it is possible to draw several general conclusions
regarding their applicability on the basis of the results presented here.
The design procedures developed here appear to be applicable to plants
having their poles anywhere in the s-plane except possibly on or close
to the positive real axis. Higdon [Ref. 21] has investigated plants
with unstable real roots from a different point of view and has shown
that PWL switching surfaces are of considerable utility in that case.

In general, PWL switching provides improved performance over that attain-
able with linear switching when the plant poles are not well-damped and
when the initial conditions being considered do not have approximately
co~-planar optimal switching points. When the plant poles are well-damped
the cost-free region must be relatively small in order to warrant DWL
switching.

It is felt that PWL switching is useful in an engineering sense for
a larger variety of plants and initial conditions than any single one of
the quasi-optimal design methods discussed in Section I-B. Furthermore,
it is apparent that the simplicity of the resulting system makes PWL

switching very attractive for practical applications.

B. SUGGESTIONS FOR FURTHER INVESTIGATION

Since the range of applicability of the class of PWL switching func-
tions considered here can be determined only by direct verification, it
would be useful to consider examples for a wider variety of plants and
initial conditions than was possible to evaluate here, and, in particular,
for unstable plants. Also, methods to reduce the complexity of the sur-
face searching problem when the order of the plant is high are worthy of
consideration.

It seems likely that a systematic method of using some of the initial
conditions to determine the linear portion of the switching surface and
then using the remainder to determine the PWL parameters could be devised.
The problems of selecting which initial conditions are to be used in

determining the respective switching function parameters and of insuring
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that the trajectories for large disturbances can be made stable once the
linear portion of the switching function is fixed do not appear to be
trivial.

The questions raised by the observed influence of the so-called
dominant periodic solution upon the region of stability in a three- or
higher~dimensional state-space should be answered. In particular, the
relationship between the observed dominant periodic solution and the
stability boundary in the n-dimensional state-~space, and the existence
and meaning of other periodic solutions are topics whose understanding
may very well lead to useful results in an area which has not received
a great deal of attention to date.

Finally, the ever-present question of equivalent-linearization is in
need of rigorous resolution. Although Aizerman's conjecture is invalid
in a number of cases, it is likely that useful results could be obtained
by restricting the nonlinearity to being an ideal contactor rather than
allowing it to have the very general nature for which the conjecture was

made.
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APPENDIX A. A CONDITION NECESSARY FOR THE EXISTENCE OF THE
DOMINANT PERIODIC SOLUTION FOR THE 1/s(s2+ 1)
AND 1/s2(s2+ 1) PLANTS

In this appendix a set of conditions necessary for the existence of
the observed dominant periodic solution will be given for the plants
considered in Chapters IV and V. No attempt will be made to consider

sufficient conditions or other types of periodic solutions.

1. l/s(sz+ 1) PLANT

A typical dominant periodic solution which has been observed for this
plant is as shown by Fig. 31. FExamination of the projections of the
trajectory indicate that the coordinates of the two switching points

Nl and Nz in the canonical space are given by

x =+ (§, O, tan ) 0< V¥ < /2.

By using the transformation of Eq. (4.3b), the coordinates of the switch-
ing points in the error space, expressed in terms of the quarter-period

Y, are found to be

ET =+ (y - tan y, O, tan ) . (Al)

Since the two points Nl and N2 are to be switching points it is
necessary that the switching function be zero at these points if the
dominant periodic solution is to exist. If a linear switching function
is used and P3’ the coefficient of €q, is not set equal to unity for

the moment, it is seen that at the points N1 and N2

Ppe * Pyey * pzez = O. (A2)

Using Eq. (Al) to obtain the coordinates of N1 and Nz, it follows
that the condition necessary for the existence of the dominant periodic

solution is that a solution exist to the equation
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P
tany 1 0 /2. A3
1 P1™ P3 Cyer (43)

Since both pl and p3 must be positive to insure stable chatter,

Eq. (A3) can have a solution if and only if

P1 > P3

It is also of interest to consider a graphical derivation of the
preceding inequality. If the parameter v is eliminated from Eq. (Al),

a locus of points lying in the e ey plane is obtained, obeying the

1!
equation

e_ =0, (A4)

This line in the e, €q plane, which is plotted in Fig. 33, rep—-
resents all points in the state-space which can be switching points for
the particular periodic solution depicted in Fig. 31. For large values
of |e3| the locus of possible switching points is asymptotic to the
+ n/2 sgn e

lines e, = —-e which have a slope of -1 in the

1 3 3 €17 ©3
plane. The intersection of the linear switching plane described by

Eq. (A2) with the e eq plane is the line

1)

(A5)

3

If the slope of this line is greater than -1, i.e., [ 4 P3> there

can be no non-trivial intersection between the line described by Eq. (AS5)
and the locus of possible switching points described by Eq. (A4). Two
typical switching surface intefsections are shown in Fig. 33. Line A

is the switching plane intersection corresponding to pl/p3 = 3.2 and,
as verified by analog simulation, produces the dominant periodic solu-
tion shown in Fig. 31 when py is chosen in the range 0.5 K Py < 3.
Line B corresponds to pl/p3 = 0.5 and indicates that the dominant

periodic solution cannot exist, as verified by analog simulation.
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AND INTERSECTIONS OF TWO LINEAR SWITCHING SURFACES
WITH THE e,, e, PLANE, 1/s(s%+ 1) PLANT

=96~




2. 1/52(s%+ 1) PLANT

The observed dominant periodic solution for this plant is of the
form shown by Fig. 32. By inspection it can be seen that the coordinates
of the two switching points N1 and N2 in the canonical space are
given by

§? =+ (0, ¥, 0, tan y) 0¥ & n/2.

By application of the transformation of Eq. (5.2b) the coordinates of

Nl and N2 in the error space are found to be

e = + (0, y-tan y, O, tan y) .

If the two points given by this equation are to lie on the linear switch-

ing surface, it is necessary that

tan f 2
= —c 0 ‘lf /2. (A6)
v pz- p! < <

Therefore, the condition necessary for the existence of the dominant

periodic solution is

Py > Pyg -

As in the third-order example of the previous section, this in-
equality can be shown graphically by eliminating ¢ from Eq. (A6) to
obtain the equation for the locus of possible periodic solution switch-

ing points:

e, = =—-¢e, 6  + arc tan e, , e, =e, =0,
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Because the form of the preceding equation is identical to that of Eq.
(A4), it follows that the locus of possible periodic solution switching

points is exactly as shown in Fig. 33, except with e and 4 sub-

e
stituted for e, and €ss respectively, and with e, = e, = 0

1 3
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APPENDIX B. A TWO-PARAMETER GRADIENT SEARCH PROCESS

To illustrate the manner in which the gradient surface searching
procedure mentioned in Section II-E is accomplished, consider the follow-
ing sketch where the points corresponding to possible measurements of

the cost J in the two-dimensional R R2 parameter space during the

1’

th
m iteration cycle are shown.

R2 J

)

t
Point 1 denotes the value of R at the start of the m h iteration

and the corresponding value of the cost function is J First, the

1°
two components of the approximate surface gradient are measured accord-

ing to the relationships

N I I d3 I3 = 9y

=9



where J2 and J3 denote the values of J measured at points 2 and

m
3 respectively; the parameter ©O is the magnitude of the perturbation
made in the components of E@ in order to measure the approximate
gradient at point 1. The value of R corresponding to point 4 is then

computed using Eq. (2.6) and the cost J4 can then be measured.

If J4 < Jl’ the change in R previously computed by using Eq. (2.6)

is then doubled, yielding point 5, and J5 is measured. If J5 <J,,
point 5 is taken as §m+l and the process is repeated to find 5m+2

If J4 >J the computed change in R is halved, yielding point 6 and

1’

the corresponding J6. If J6 £ d point 6 is taken as 5@+1 and the

1?
process is repeated. By using this procedure, the effective value of
the feedback gain Y can vary from one-half to twice its nominal value,
with only a 25 percent increase in the number of points at which J
must be measured.

If both J4 and J6 are greater than Jl, either the measurement
of the approximate gradient has furnished misleading information or the
value of Ym was too high, provided, of course, that noise has not been
a significant factor. Therefore, it would seem reasonable to reduce
v and & and repeat the process. However, before doing this the values

of cost used in measuring the gradient, namely J and J3 are com-

2
pared with J and, if either one is less than or equal to J

1 1?
+1
ccrresponding value of R is taken as Em . If neither of these tests

the

provides a lower value of cost, then J7 and J8 are measured and com-

pared to J Finally, if both J7 and J8 exceed Jl’ the values of

Y and ©§ ire halved and the process repeated, again starting with the
measurement of the approximafe gradient at point 1. The search process
is stopped when & has reached a certain arbitrary lower bound.

If the trajectory corresponding to any one of the K 1initial con-
ditions used in measuring J 1is unstable or has a settling time which
exceeds the 1limits for which the analog computer is scaled, the value of
J at that particular R cannot be determined, i.e., the performance
surface does not exist there. The procedure followed in this event

depends upon the particular point in the search process at which the

instability occurs. If J1 does not exist for the first iteration,
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the search process cannot be initiated and a new choice of R must be
made. Methods for initiating the search process at a point in the para-
meter space where stability can be guaranteed are discussed in Chapter
I11. 1£f J exists but either J_ or J does not, the value of B

1 2 3
must be reduced until both J2 and J3 exist before the search process
can continue. Since, in this situation, the value of R 1lies near a
region where J = o , the value of aJ/BE is likely to be quite large,

so the value of Yy 1is also halved. If J4 does not exist, then J

6
is measured. If J6 does not exist either, both Yy and & are halved.
Should J5 be infinite, 5P+1 is taken as point 4 because J5 may be
measured only if J4 < Jl' Finally, if either J7 or J8 are measured

and found to be infinite, both Yy and & are halved and the approximate

gradient is remeasured.

MThea ~hAadAan € 4+thAa init+tinl xr ar
The choice of the initial values for H and

(o4
©
w
3
©
2
[0}
o
3
+
1
b
0
el

and erxror, but, because of their adaptive nature, the choice was not
critical in the examples worked, provided that they were not chosen too

low.
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